001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.statistics; 031 032import Jama.Matrix; 033 034/** 035 * Class to compute the mean and covariance of some given data. 036 * 037 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 038 * 039 */ 040public class MeanAndCovariance { 041 /** 042 * The mean vector (1xN) 043 */ 044 public final Matrix mean; 045 046 /** 047 * The covariance matrix (NxN) 048 */ 049 public final Matrix covar; 050 051 /** 052 * Construct a new {@link MeanAndCovariance} containing the mean vector and 053 * covariance matrix of the given data (each row is a data point) 054 * 055 * @param samples 056 * the data 057 */ 058 public MeanAndCovariance(float[][] samples) 059 { 060 final int nsamples = samples.length; 061 final int ndims = samples[0].length; 062 063 mean = new Matrix(1, ndims); 064 covar = new Matrix(ndims, ndims); 065 066 // mean 067 for (int j = 0; j < nsamples; j++) { 068 for (int i = 0; i < ndims; i++) { 069 mean.set(0, i, mean.get(0, i) + samples[j][i]); 070 } 071 } 072 for (int i = 0; i < ndims; i++) { 073 mean.set(0, i, mean.get(0, i) / nsamples); 074 } 075 076 // covar 077 for (int i = 0; i < ndims; i++) { 078 for (int j = 0; j < ndims; j++) { 079 double qij = 0; 080 081 for (int k = 0; k < nsamples; k++) { 082 qij += (samples[k][i] - mean.get(0, i)) * (samples[k][j] - mean.get(0, j)); 083 } 084 085 covar.set(i, j, qij / (nsamples - 1)); 086 } 087 } 088 } 089 090 /** 091 * Construct a new {@link MeanAndCovariance} containing the mean vector and 092 * covariance matrix of the given data (each row is a data point) 093 * 094 * @param samples 095 * the data 096 */ 097 public MeanAndCovariance(double[][] samples) 098 { 099 final int nsamples = samples.length; 100 final int ndims = samples[0].length; 101 102 mean = new Matrix(1, ndims); 103 covar = new Matrix(ndims, ndims); 104 105 // mean 106 for (int j = 0; j < nsamples; j++) { 107 for (int i = 0; i < ndims; i++) { 108 mean.set(0, i, mean.get(0, i) + samples[j][i]); 109 } 110 } 111 for (int i = 0; i < ndims; i++) { 112 mean.set(0, i, mean.get(0, i) / nsamples); 113 } 114 115 // covar 116 for (int i = 0; i < ndims; i++) { 117 for (int j = 0; j < ndims; j++) { 118 double qij = 0; 119 120 for (int k = 0; k < nsamples; k++) { 121 qij += (samples[k][i] - mean.get(0, i)) * (samples[k][j] - mean.get(0, j)); 122 } 123 124 covar.set(i, j, qij / (nsamples - 1)); 125 } 126 } 127 } 128 129 /** 130 * Construct a new {@link MeanAndCovariance} containing the mean vector and 131 * covariance matrix of the given data (each row is a data point) 132 * 133 * @param samples 134 * the data 135 */ 136 public MeanAndCovariance(Matrix samples) { 137 this(samples.getArray()); 138 } 139 140 /** 141 * Get the mean vector 142 * 143 * @return the mean vector 144 */ 145 public Matrix getMean() { 146 return mean; 147 } 148 149 /** 150 * Get the covariance matrix 151 * 152 * @return the covariance matrix 153 */ 154 public Matrix getCovariance() { 155 return covar; 156 } 157 158 /** 159 * Get the mean of the data 160 * 161 * @param samples 162 * the data 163 * @return the mean 164 */ 165 public static Matrix computeMean(float[][] samples) { 166 return new MeanAndCovariance(samples).mean; 167 } 168 169 /** 170 * Get the covariance of the data 171 * 172 * @param samples 173 * the data 174 * @return the covariance matrix 175 */ 176 public static Matrix computeCovariance(float[][] samples) { 177 return new MeanAndCovariance(samples).covar; 178 } 179 180 /** 181 * Get the mean of the data 182 * 183 * @param samples 184 * the data 185 * @return the mean 186 */ 187 public static Matrix computeMean(double[][] samples) { 188 return new MeanAndCovariance(samples).mean; 189 } 190 191 /** 192 * Get the covariance of the data 193 * 194 * @param samples 195 * the data 196 * @return the covariance matrix 197 */ 198 public static Matrix computeCovariance(double[][] samples) { 199 return new MeanAndCovariance(samples).covar; 200 } 201 202 /** 203 * Get the mean of the data 204 * 205 * @param samples 206 * the data 207 * @return the mean 208 */ 209 public static Matrix computeMean(Matrix samples) { 210 return new MeanAndCovariance(samples).mean; 211 } 212 213 /** 214 * Get the covariance of the data 215 * 216 * @param samples 217 * the data 218 * @return the covariance matrix 219 */ 220 public static Matrix computeCovariance(Matrix samples) { 221 return new MeanAndCovariance(samples).covar; 222 } 223}