001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.statistics.distribution; 031 032import Jama.Matrix; 033 034/** 035 * Implementation of a spherical {@link MultivariateGaussian} (diagonal 036 * covariance matrix with equal values). 037 * 038 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 039 */ 040public class SphericalMultivariateGaussian extends AbstractMultivariateGaussian { 041 /** 042 * The variance 043 */ 044 public double variance = 1; 045 046 /** 047 * Construct the Gaussian with the provided center and covariance 048 * 049 * @param mean 050 * centre of the Gaussian 051 * @param variance 052 * variance of the Gaussian 053 */ 054 public SphericalMultivariateGaussian(Matrix mean, double variance) { 055 this.mean = mean; 056 this.variance = variance; 057 } 058 059 /** 060 * Construct the Gaussian with the zero mean and unit variance 061 * 062 * @param ndims 063 * number of dimensions 064 */ 065 public SphericalMultivariateGaussian(int ndims) { 066 this.mean = new Matrix(1, ndims); 067 } 068 069 @Override 070 public Matrix getCovariance() { 071 final int d = mean.getColumnDimension(); 072 return Matrix.identity(d, d).timesEquals(variance); 073 } 074 075 @Override 076 public double getCovariance(int row, int col) { 077 if (row < 0 || row >= mean.getColumnDimension() || col < 0 || col > mean.getColumnDimension()) 078 throw new IndexOutOfBoundsException(); 079 080 if (row == col) 081 return variance; 082 return 0; 083 } 084}