001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.statistics.distribution.metrics; 031 032import org.openimaj.math.matrix.MatrixUtils; 033import org.openimaj.math.statistics.distribution.MultivariateGaussian; 034import org.openimaj.util.comparator.DistanceComparator; 035 036import Jama.Matrix; 037 038/** 039 * Calculate the KL divergence of two multivariate gaussians. Equation taken 040 * from: 041 * http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback.E2 042 * .80.93Leibler_divergence 043 * 044 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 045 */ 046public class GaussianKLDivergence implements DistanceComparator<MultivariateGaussian> { 047 048 @Override 049 public boolean isDistance() { 050 return true; 051 } 052 053 @Override 054 public double compare(MultivariateGaussian o1, MultivariateGaussian o2) { 055 final Matrix sig0 = o1.getCovariance(); 056 final Matrix sig1 = o2.getCovariance(); 057 final Matrix mu0 = o1.getMean(); 058 final Matrix mu1 = o2.getMean(); 059 final int K = o1.numDims(); 060 061 final Matrix sig1inv = sig1.inverse(); 062 final double sigtrace = MatrixUtils.trace(sig1inv.times(sig0)); 063 064 final Matrix mudiff = mu1.minus(mu0); 065 final double xt_s_x = mudiff.transpose().times(sig1inv).times(mudiff).get(0, 0); 066 final double ln_norm_sig = Math.log(sig0.norm1() / sig1.norm1()); 067 068 return 0.5 * (sigtrace + xt_s_x - K - ln_norm_sig); 069 } 070 071}