001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.statistics.distribution.metrics; 031 032import java.util.Random; 033 034import org.openimaj.math.statistics.distribution.MultivariateDistribution; 035import org.openimaj.util.array.ArrayUtils; 036import org.openimaj.util.comparator.DistanceComparator; 037 038/** 039 * By sampling a distribution and calculating the log liklihood 040 * of those samples against another distribution, construct a distance metric. 041 * 042 * This function uses {@link MultivariateDistribution#estimateLogProbability(double[][])} 043 * 044 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 045 */ 046public class SampledMultivariateDistanceComparator implements DistanceComparator<MultivariateDistribution>{ 047 048 049 private static final int DEFAULT_SAMPLE = 1000; 050 private int samples; 051 private Random rng; 052 053 /** 054 * 055 */ 056 public SampledMultivariateDistanceComparator() { 057 this.samples = DEFAULT_SAMPLE; 058 this.rng = new Random(); 059 } 060 061 /** 062 * @param nsamples 063 */ 064 public SampledMultivariateDistanceComparator(int nsamples) { 065 this(); 066 this.samples = nsamples; 067 } 068 069 /** 070 * @param seed 071 * @param nsamples 072 */ 073 public SampledMultivariateDistanceComparator(long seed, int nsamples) { 074 this.rng = new Random(seed); 075 this.samples = nsamples; 076 } 077 078 @Override 079 public double compare(MultivariateDistribution o1, MultivariateDistribution o2) { 080 double[][] X = o1.sample(samples, rng); 081 double[] sampleP = o2.estimateLogProbability(X); 082 return ArrayUtils.sumValues(sampleP); 083 } 084 085 @Override 086 public boolean isDistance() { 087 return false; 088 } 089 090}