001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.util; 031 032/** 033 * Utility methods for dealing with quadratic equations. 034 * 035 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 036 * 037 */ 038public class QuadraticEquation { 039 /** 040 * Solve the general quadratic ax^2 + bx + c = 0 041 * 042 * @param a a 043 * @param b b 044 * @param c c 045 * @return the solution 046 */ 047 public static float[] solveGeneralQuadratic(float a, float b, float c) { 048 float [] result = new float[2]; 049 050 float sqrt_discriminant = (float) Math.sqrt((b * b) - (4 * a * c)); 051 float r1 = ((-1 * b) + sqrt_discriminant) / (2 * a); 052 float r2 = ((-1 * b) - sqrt_discriminant) / (2 * a); 053 054 if (r1<r2) { 055 result[0] = r1; result[1] = r2; 056 } else { 057 result[0] = r2; result[1] = r1; 058 } 059 060 return result; 061 } 062 063 /** 064 * Solve the general quadratic ax^2 + bx + c = 0 065 * 066 * @param a a 067 * @param b b 068 * @param c c 069 * @return the solution 070 */ 071 public static double[] solveGeneralQuadratic(double a, double b, double c) { 072 double [] result = new double[2]; 073 074 double sqrt_discriminant = Math.sqrt((b * b) - (4 * a * c)); 075 double r1 = ((-1 * b) + sqrt_discriminant) / (2 * a); 076 double r2 = ((-1 * b) - sqrt_discriminant) / (2 * a); 077 078 if (r1<r2) { 079 result[0] = r1; result[1] = r2; 080 } else { 081 result[0] = r2; result[1] = r1; 082 } 083 084 return result; 085 } 086}