001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.annotation.basic; 031 032import gnu.trove.list.array.TDoubleArrayList; 033import gnu.trove.map.hash.TIntIntHashMap; 034import gnu.trove.map.hash.TObjectIntHashMap; 035import gnu.trove.procedure.TObjectIntProcedure; 036 037import java.util.ArrayList; 038import java.util.Collection; 039import java.util.HashSet; 040import java.util.List; 041import java.util.Set; 042 043import org.openimaj.ml.annotation.Annotated; 044import org.openimaj.ml.annotation.BatchAnnotator; 045import org.openimaj.ml.annotation.ScoredAnnotation; 046import org.openimaj.ml.annotation.basic.util.NumAnnotationsChooser; 047 048import cern.jet.random.Empirical; 049import cern.jet.random.EmpiricalWalker; 050import cern.jet.random.engine.MersenneTwister; 051 052/** 053 * Annotator that randomly assigns annotations, but takes account of the prior 054 * probability of each annotation based on the proportion of times it occurred 055 * in training. Annotations that occurred less in training are less likely to be 056 * picked. The number of annotations produced is set by the type of 057 * {@link NumAnnotationsChooser} used. 058 * 059 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 060 * 061 * @param <OBJECT> 062 * Type of object being annotated 063 * @param <ANNOTATION> 064 * Type of annotation. 065 */ 066public class IndependentPriorRandomAnnotator<OBJECT, ANNOTATION> extends BatchAnnotator<OBJECT, ANNOTATION> { 067 protected List<ANNOTATION> annotations; 068 protected NumAnnotationsChooser numAnnotations; 069 protected EmpiricalWalker annotationProbability; 070 071 /** 072 * Construct with the given {@link NumAnnotationsChooser} to determine how 073 * many annotations are produced by calls to {@link #annotate(Object)}. 074 * 075 * @param chooser 076 * the {@link NumAnnotationsChooser} to use. 077 */ 078 public IndependentPriorRandomAnnotator(NumAnnotationsChooser chooser) { 079 this.numAnnotations = chooser; 080 } 081 082 @Override 083 public void train(List<? extends Annotated<OBJECT, ANNOTATION>> data) { 084 final TIntIntHashMap nAnnotationCounts = new TIntIntHashMap(); 085 final TObjectIntHashMap<ANNOTATION> annotationCounts = new TObjectIntHashMap<ANNOTATION>(); 086 int maxVal = 0; 087 088 for (final Annotated<OBJECT, ANNOTATION> sample : data) { 089 final Collection<ANNOTATION> annos = sample.getAnnotations(); 090 091 for (final ANNOTATION s : annos) { 092 annotationCounts.adjustOrPutValue(s, 1, 1); 093 } 094 095 nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1); 096 097 if (annos.size() > maxVal) 098 maxVal = annos.size(); 099 } 100 101 // build distribution and rng for each annotation 102 annotations = new ArrayList<ANNOTATION>(); 103 final TDoubleArrayList probs = new TDoubleArrayList(); 104 annotationCounts.forEachEntry(new TObjectIntProcedure<ANNOTATION>() { 105 @Override 106 public boolean execute(ANNOTATION a, int b) { 107 annotations.add(a); 108 probs.add(b); 109 return true; 110 } 111 }); 112 annotationProbability = new EmpiricalWalker(probs.toArray(), Empirical.NO_INTERPOLATION, new MersenneTwister()); 113 114 numAnnotations.train(data); 115 } 116 117 @Override 118 public List<ScoredAnnotation<ANNOTATION>> annotate(OBJECT image) { 119 final int nAnnotations = numAnnotations.numAnnotations(); 120 121 final List<ScoredAnnotation<ANNOTATION>> annos = new ArrayList<ScoredAnnotation<ANNOTATION>>(); 122 123 for (int i = 0; i < nAnnotations; i++) { 124 final int annotationIdx = annotationProbability.nextInt(); 125 annos.add(new ScoredAnnotation<ANNOTATION>(annotations.get(annotationIdx), (float) annotationProbability 126 .pdf(annotationIdx + 1))); 127 } 128 129 return annos; 130 } 131 132 @Override 133 public Set<ANNOTATION> getAnnotations() { 134 return new HashSet<ANNOTATION>(annotations); 135 } 136}