001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.annotation.basic.util; 031 032import gnu.trove.map.hash.TIntIntHashMap; 033 034import java.util.Collection; 035import java.util.List; 036 037import org.openimaj.ml.annotation.Annotated; 038 039import cern.jet.random.Empirical; 040import cern.jet.random.EmpiricalWalker; 041import cern.jet.random.engine.MersenneTwister; 042 043/** 044 * Choose the number of annotations based on the numbers of annotations 045 * of each training example. Internally this {@link NumAnnotationsChooser} 046 * constructs the distribution of annotation lengths from the training 047 * data and then picks lengths randomly based on the distribution. 048 * 049 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 050 */ 051public class PriorChooser implements NumAnnotationsChooser { 052 private EmpiricalWalker numAnnotations; 053 054 @Override 055 public <O, A> void train(List<? extends Annotated<O, A>> data) { 056 TIntIntHashMap nAnnotationCounts = new TIntIntHashMap(); 057 int maxVal = 0; 058 059 for (Annotated<O, A> sample : data) { 060 Collection<A> annos = sample.getAnnotations(); 061 062 nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1); 063 064 if (annos.size()>maxVal) maxVal = annos.size(); 065 } 066 067 //build distribution and rng for the number of annotations 068 double [] distr = new double[maxVal+1]; 069 for (int i=0; i<=maxVal; i++) 070 distr[i] = nAnnotationCounts.get(i); 071 numAnnotations = new EmpiricalWalker(distr, Empirical.NO_INTERPOLATION, new MersenneTwister()); 072 } 073 074 @Override 075 public int numAnnotations() { 076 return numAnnotations.nextInt(); 077 } 078}