001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.annotation.model; 031 032import java.util.ArrayList; 033import java.util.List; 034import java.util.Set; 035 036import org.openimaj.feature.FeatureExtractor; 037import org.openimaj.math.model.EstimatableModel; 038import org.openimaj.ml.annotation.Annotated; 039import org.openimaj.ml.annotation.BatchAnnotator; 040import org.openimaj.ml.annotation.ScoredAnnotation; 041import org.openimaj.util.pair.IndependentPair; 042 043/** 044 * An {@link BatchAnnotator} backed by a {@link EstimatableModel}. This only really makes 045 * sense if the dependent variable of the model can take a set of discrete 046 * values. 047 * 048 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 049 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 050 * 051 * @param <OBJECT> 052 * Type of object being annotated 053 * @param <ANNOTATION> 054 * Type of annotation 055 * @param <FEATURE> 056 * Type of feature extracted by the extractor 057 */ 058public class ModelAnnotator<OBJECT, ANNOTATION, FEATURE> 059 extends 060 BatchAnnotator<OBJECT, ANNOTATION> 061{ 062 EstimatableModel<FEATURE, ANNOTATION> model; 063 Set<ANNOTATION> annotations; 064 private FeatureExtractor<FEATURE, OBJECT> extractor; 065 066 /** 067 * Construct with the given parameters. 068 * 069 * @param extractor 070 * The feature extractor 071 * @param model 072 * The model 073 * @param annotations 074 * The set of annotations that the model can produce 075 */ 076 public ModelAnnotator(FeatureExtractor<FEATURE, OBJECT> extractor, EstimatableModel<FEATURE, ANNOTATION> model, 077 Set<ANNOTATION> annotations) 078 { 079 this.extractor = extractor; 080 this.model = model; 081 this.annotations = annotations; 082 } 083 084 @Override 085 public void train(List<? extends Annotated<OBJECT, ANNOTATION>> data) { 086 final List<IndependentPair<FEATURE, ANNOTATION>> featureData = new ArrayList<IndependentPair<FEATURE, ANNOTATION>>(); 087 088 for (final Annotated<OBJECT, ANNOTATION> a : data) { 089 final FEATURE f = extractor.extractFeature(a.getObject()); 090 091 for (final ANNOTATION ann : a.getAnnotations()) 092 featureData.add(IndependentPair.pair(f, ann)); 093 } 094 095 model.estimate(featureData); 096 } 097 098 @Override 099 public Set<ANNOTATION> getAnnotations() { 100 return annotations; 101 } 102 103 @Override 104 public List<ScoredAnnotation<ANNOTATION>> annotate(OBJECT object) { 105 final FEATURE f = extractor.extractFeature(object); 106 107 final List<ScoredAnnotation<ANNOTATION>> result = new ArrayList<ScoredAnnotation<ANNOTATION>>(); 108 result.add(new ScoredAnnotation<ANNOTATION>(model.predict(f), 1)); 109 110 return result; 111 } 112}