001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.annotation.utils; 031 032import org.openimaj.feature.FeatureVector; 033import org.openimaj.feature.SparseByteFV; 034import org.openimaj.feature.SparseDoubleFV; 035import org.openimaj.feature.SparseFloatFV; 036import org.openimaj.feature.SparseIntFV; 037import org.openimaj.feature.SparseLongFV; 038import org.openimaj.feature.SparseShortFV; 039import org.openimaj.util.array.SparseByteArray; 040import org.openimaj.util.array.SparseDoubleArray; 041import org.openimaj.util.array.SparseFloatArray; 042import org.openimaj.util.array.SparseIntArray; 043import org.openimaj.util.array.SparseLongArray; 044import org.openimaj.util.array.SparseShortArray; 045 046import de.bwaldvogel.liblinear.Feature; 047import de.bwaldvogel.liblinear.FeatureNode; 048 049/** 050 * Helper methods for interoperability of OpenIMAJ types with Liblinear. 051 * 052 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 053 * 054 */ 055public class LiblinearHelper { 056 /** 057 * Convert a {@link FeatureVector} to an array of {@link Feature}s. 058 * 059 * @param feature 060 * input {@link FeatureVector} 061 * @param bias 062 * any bias term to add. if <=0 then no term is added; otherwise 063 * an extra element will be added to the end of the vector set to 064 * this value. 065 * @return output {@link Feature} array 066 */ 067 public static Feature[] convert(FeatureVector feature, double bias) { 068 final Feature[] out; 069 final int extra = bias <= 0 ? 0 : 1; 070 int i = 0; 071 072 if (feature instanceof SparseDoubleFV) { 073 out = new Feature[((SparseDoubleFV) feature).values.used() + extra]; 074 075 for (final SparseDoubleArray.Entry entry : ((SparseDoubleFV) feature).getVector().entries()) { 076 out[i++] = new FeatureNode(entry.index + 1, entry.value); 077 } 078 } else if (feature instanceof SparseFloatFV) { 079 out = new Feature[((SparseFloatFV) feature).values.used() + extra]; 080 081 for (final SparseFloatArray.Entry entry : ((SparseFloatFV) feature).getVector().entries()) { 082 out[i++] = new FeatureNode(entry.index + 1, entry.value); 083 } 084 } else if (feature instanceof SparseByteFV) { 085 out = new Feature[((SparseByteFV) feature).values.used() + extra]; 086 087 for (final SparseByteArray.Entry entry : ((SparseByteFV) feature).getVector().entries()) { 088 out[i++] = new FeatureNode(entry.index + 1, entry.value); 089 } 090 } else if (feature instanceof SparseShortFV) { 091 out = new Feature[((SparseShortFV) feature).values.used() + extra]; 092 093 for (final SparseShortArray.Entry entry : ((SparseShortFV) feature).getVector().entries()) { 094 out[i++] = new FeatureNode(entry.index + 1, entry.value); 095 } 096 } else if (feature instanceof SparseIntFV) { 097 out = new Feature[((SparseIntFV) feature).values.used() + extra]; 098 099 for (final SparseIntArray.Entry entry : ((SparseIntFV) feature).getVector().entries()) { 100 out[i++] = new FeatureNode(entry.index + 1, entry.value); 101 } 102 } else if (feature instanceof SparseLongFV) { 103 out = new Feature[((SparseLongFV) feature).values.used() + extra]; 104 105 for (final SparseLongArray.Entry entry : ((SparseLongFV) feature).getVector().entries()) { 106 out[i++] = new FeatureNode(entry.index + 1, entry.value); 107 } 108 } else { 109 final double[] array = feature.asDoubleVector(); 110 int numZero = 0; 111 112 for (i = 0; i < array.length; i++) { 113 if (array[i] == 0) 114 numZero++; 115 } 116 117 out = new Feature[array.length - numZero + extra]; 118 119 int j; 120 for (i = 0, j = 0; i < array.length; i++) { 121 if (array[i] != 0) 122 out[j++] = new FeatureNode(i + 1, array[i]); 123 } 124 } 125 126 if (extra == 1) { 127 out[out.length - 1] = new FeatureNode(feature.length() + 1, bias); 128 } 129 130 return out; 131 } 132 133 /** 134 * Convert a {@link FeatureVector} to an array of doubles using 135 * {@link FeatureVector#asDoubleVector()}. 136 * 137 * @param feature 138 * the feature 139 * @param bias 140 * any bias term to add. if <=0 then no term is added; otherwise 141 * an extra element will be added to the end of the vector set to 142 * this value. 143 * @return the double[] version of the feature 144 */ 145 public static double[] convertDense(FeatureVector feature, double bias) { 146 final double[] arr = feature.asDoubleVector(); 147 148 if (bias <= 0) 149 return arr; 150 151 final double[] arr2 = new double[arr.length + 1]; 152 System.arraycopy(arr, 0, arr2, 0, arr.length); 153 arr2[arr.length] = bias; 154 return arr2; 155 } 156}