001/* 002 AUTOMATICALLY GENERATED BY jTemp FROM 003 /Users/jsh2/Work/openimaj/target/checkout/machine-learning/clustering/src/main/jtemp/org/openimaj/ml/clustering/assignment/hard/Exact#T#Assigner.jtemp 004*/ 005/** 006 * Copyright (c) 2011, The University of Southampton and the individual contributors. 007 * All rights reserved. 008 * 009 * Redistribution and use in source and binary forms, with or without modification, 010 * are permitted provided that the following conditions are met: 011 * 012 * * Redistributions of source code must retain the above copyright notice, 013 * this list of conditions and the following disclaimer. 014 * 015 * * Redistributions in binary form must reproduce the above copyright notice, 016 * this list of conditions and the following disclaimer in the documentation 017 * and/or other materials provided with the distribution. 018 * 019 * * Neither the name of the University of Southampton nor the names of its 020 * contributors may be used to endorse or promote products derived from this 021 * software without specific prior written permission. 022 * 023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 024 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 025 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 026 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 027 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 028 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 029 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 030 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 031 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 032 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 033 */ 034package org.openimaj.ml.clustering.assignment.hard; 035 036import org.openimaj.feature.IntFVComparator; 037import org.openimaj.knn.IntNearestNeighboursExact; 038import org.openimaj.ml.clustering.assignment.HardAssigner; 039import org.openimaj.ml.clustering.CentroidsProvider; 040import org.openimaj.util.pair.IntFloatPair; 041 042/** 043 * A {@link HardAssigner} that assigns points to the closest 044 * cluster based on the distance to the centroid. 045 * 046 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 047 */ 048public class ExactIntAssigner implements HardAssigner<int[], float[], IntFloatPair> { 049 protected IntNearestNeighboursExact nn; 050 051 /** 052 * Construct the assigner using the given cluster data. The 053 * distance function defaults to Euclidean. 054 * 055 * @param provider the cluster data provider 056 */ 057 public ExactIntAssigner(CentroidsProvider<int[]> provider) { 058 this(provider, null); 059 } 060 061 /** 062 * Construct the assigner using the given cluster data and 063 * distance function. 064 * 065 * @param provider the cluster data provider 066 * @param comparison the distance function 067 */ 068 public ExactIntAssigner(CentroidsProvider<int[]> provider, IntFVComparator comparison) { 069 nn = new IntNearestNeighboursExact(provider.getCentroids(), comparison); 070 } 071 072 /** 073 * Construct the assigner using the given cluster data and 074 * distance function. 075 * 076 * @param data the cluster data 077 * @param comparison the distance function 078 */ 079 public ExactIntAssigner(int[][] data, IntFVComparator comparison) { 080 nn = new IntNearestNeighboursExact(data, comparison); 081 } 082 083 @Override 084 public int[] assign(int[][] data) { 085 int [] argmins = new int [data.length]; 086 float [] mins = new float [data.length]; 087 088 nn.searchNN(data, argmins, mins); 089 090 return argmins; 091 } 092 093 @Override 094 public int assign(int[] data) { 095 return assign(new int[][] { data })[0]; 096 } 097 098 @Override 099 public void assignDistance(int[][] data, int[] indices, float[] distances) { 100 nn.searchNN(data, indices, distances); 101 } 102 103 @Override 104 public IntFloatPair assignDistance(int[] data) { 105 int [] index = new int [1]; 106 float [] distance = new float [1]; 107 108 nn.searchNN(new int[][] { data }, index, distance); 109 110 return new IntFloatPair(index[0], distance[0]); 111 } 112 113 @Override 114 public int size() { 115 return nn.size(); 116 } 117 118 @Override 119 public int numDimensions() { 120 return nn.numDimensions(); 121 } 122 123 /** 124 * Get the underlying nearest-neighbour implementation. 125 * 126 * @return the underlying nearest-neighbour implementation. 127 */ 128 public IntNearestNeighboursExact getNN() { 129 return this.nn; 130 } 131}