001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.dbscan; 031 032import org.openimaj.ml.clustering.DistanceClusterer; 033 034import ch.akuhn.matrix.SparseMatrix; 035 036/** 037 * {@link DBSCAN} using a {@link SparseMatrix} of distances 038 * 039 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 040 */ 041public class DistanceDBSCAN extends SparseMatrixDBSCAN implements DistanceClusterer<DoubleDBSCANClusters> { 042 043 /** 044 * @param eps 045 * @param minPts 046 */ 047 public DistanceDBSCAN(double eps, int minPts) { 048 super(eps, minPts); 049 } 050 051 @Override 052 public DoubleDBSCANClusters cluster(SparseMatrix data) { 053 return this.clusterDistance(data); 054 } 055 056 @Override 057 public DoubleDBSCANClusters clusterDistance(SparseMatrix data) { 058 final State s = new State(data.rowCount(), new SparseMatrixRegionMode(data, true), this.noiseAsClusters); 059 return dbscan(s); 060 } 061}