001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.kmeans; 031 032import java.io.IOException; 033 034import org.openimaj.data.DataSource; 035 036import com.rits.cloning.Cloner; 037 038/** 039 * Initialisation for K-Means clustering. Given a data source of samples and a 040 * set of clusters to fill, implementations of this class should initialise the 041 * KMeans algorithm. 042 * 043 * A default RANDOM implementation is provided which uses 044 * {@link DataSource#getRandomRows} 045 * 046 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 047 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 048 * 049 * @param <T> 050 * Type of object being clustered 051 */ 052public abstract class FeatureVectorKMeansInit<T> { 053 /** 054 * Initialise the centroids based on the given data. 055 * 056 * @param bds 057 * the data source of samples 058 * @param clusters 059 * the clusters to init 060 * @throws IOException 061 * problem reading samples 062 */ 063 public abstract void initKMeans(DataSource<T> bds, T[] clusters) throws IOException; 064 065 /** 066 * Simple kmeans initialized on randomly selected samples. 067 * 068 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 069 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 070 * 071 * @param <T> 072 * Type of object being clustered 073 */ 074 public static class RANDOM<T> extends FeatureVectorKMeansInit<T> { 075 @Override 076 public void initKMeans(DataSource<T> bds, T[] clusters) throws IOException { 077 bds.getRandomRows(clusters); 078 079 final Cloner cloner = new Cloner(); 080 for (int i = 0; i < clusters.length; i++) { 081 clusters[i] = cloner.deepClone(clusters[i]); 082 } 083 } 084 } 085}