001/* 002 AUTOMATICALLY GENERATED BY jTemp FROM 003 /Users/jsh2/Work/openimaj/target/checkout/machine-learning/clustering/src/main/jtemp/org/openimaj/ml/clustering/kmeans/#T#KMeansInit.jtemp 004*/ 005/** 006 * Copyright (c) 2011, The University of Southampton and the individual contributors. 007 * All rights reserved. 008 * 009 * Redistribution and use in source and binary forms, with or without modification, 010 * are permitted provided that the following conditions are met: 011 * 012 * * Redistributions of source code must retain the above copyright notice, 013 * this list of conditions and the following disclaimer. 014 * 015 * * Redistributions in binary form must reproduce the above copyright notice, 016 * this list of conditions and the following disclaimer in the documentation 017 * and/or other materials provided with the distribution. 018 * 019 * * Neither the name of the University of Southampton nor the names of its 020 * contributors may be used to endorse or promote products derived from this 021 * software without specific prior written permission. 022 * 023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 024 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 025 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 026 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 027 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 028 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 029 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 030 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 031 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 032 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 033 */ 034package org.openimaj.ml.clustering.kmeans; 035 036import java.io.IOException; 037 038import org.openimaj.data.DataSource; 039 040/** 041 * Initialisation for K-Means clustering. Given a data source of samples and a 042 * set of clusters to fill, implementations of this class should initialise 043 * the KMeans algorithm. 044 * 045 * A default RANDOM implementation is provided which uses {@link DataSource#getRandomRows} 046 * 047 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 048 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 049 */ 050public abstract class IntKMeansInit { 051 /** 052 * Initialise the centroids based on the given data. 053 * 054 * @param bds the data source of samples 055 * @param clusters the clusters to init 056 * @throws IOException problem reading samples 057 */ 058 public abstract void initKMeans(DataSource<int[]> bds, int[][] clusters) throws IOException; 059 060 /** 061 * Simple kmeans initialized on randomly selected samples. 062 * 063 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 064 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 065 */ 066 public static class RANDOM extends IntKMeansInit { 067 @Override 068 public void initKMeans(DataSource<int[]> bds, int[][] clusters) throws IOException { 069 bds.getRandomRows(clusters); 070 } 071 } 072}