001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032import java.util.Iterator; 033 034import org.openimaj.util.pair.DoubleObjectPair; 035 036import ch.akuhn.matrix.SparseMatrix; 037import ch.akuhn.matrix.Vector; 038import ch.akuhn.matrix.eigenvalues.FewEigenvalues; 039 040/** 041 * Attempts to automatically choose the number of eigen vectors based on the 042 * comparative value of the eigen value with the first eigen value seen. 043 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 044 * 045 */ 046public class AbsoluteValueEigenChooser extends EigenChooser{ 047 048 private double absoluteGap; 049 private double maxSelect; 050 051 /** 052 * @param absoluteGap the gap between the first and the current value 053 * @param maxSelect 054 */ 055 public AbsoluteValueEigenChooser(double absoluteGap, double maxSelect) { 056 this.absoluteGap = absoluteGap; 057 this.maxSelect = maxSelect; 058 } 059 060 @Override 061 public int nEigenVectors(Iterator<DoubleObjectPair<Vector>> vals, int totalEigenVectors) { 062 double max = -Double.MAX_VALUE; 063 double[] valids = new double[totalEigenVectors]; 064 valids[0] = vals.next().first; // Skip the first item in the calculation of max 065 int i = 1; // start from the second index 066 for (; vals.hasNext();) { 067 double val = vals.next().first; 068 if(val < 0) break; 069 valids[i] = val; 070 max = Math.max(max, valids[i]); 071 i++; 072 } 073 int maxindex = i+1; 074 int count = 2; // the first and the second must be included 075 double first = valids[1]; // the second is what we compare against 076 for (int j = 2; j < maxindex; j++) { 077 double diff = Math.abs(first - valids[j]); 078 if(diff / max > absoluteGap) 079 break; 080 count++; 081 } 082 return count; 083 } 084 085 @Override 086 public FewEigenvalues prepare(final SparseMatrix laplacian) { 087 int total = laplacian.columnCount(); 088 FewEigenvalues eig = FewEigenvalues.of(laplacian); 089 return eig.greatest((int) (total*maxSelect)); 090 } 091 092 @Override 093 public String toString() { 094 return String.format("AbsVal=%2.2f,%2.2f",this.absoluteGap,this.maxSelect); 095 } 096 097}