001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032import java.util.List; 033 034import org.apache.log4j.Logger; 035import org.openimaj.feature.DoubleFV; 036import org.openimaj.feature.FeatureExtractor; 037import org.openimaj.ml.clustering.SimilarityClusterer; 038import org.openimaj.util.function.Function; 039 040import ch.akuhn.matrix.SparseMatrix; 041 042/** 043 * Wraps the functionality of a {@link SimilarityClusterer} around a dataset 044 * 045 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 046 * @param <T> 047 * 048 */ 049public abstract class DoubleFVSimilarityFunction<T> implements Function<List<T>, SparseMatrix> { 050 Logger logger = Logger.getLogger(DoubleFVSimilarityFunction.class); 051 protected double[][] feats = null; 052 private FeatureExtractor<DoubleFV, T> extractor; 053 private List<T> data; 054 055 /** 056 * @param extractor 057 * 058 */ 059 public DoubleFVSimilarityFunction(FeatureExtractor<DoubleFV, T> extractor) { 060 this.extractor = extractor; 061 } 062 063 @Override 064 public SparseMatrix apply(List<T> in) { 065 this.data = in; 066 this.prepareFeats(); 067 return this.similarity(); 068 }; 069 070 protected void prepareFeats() { 071 if (feats != null) 072 return; 073 final int numInstances = data.size(); 074 feats = new double[numInstances][]; 075 int index = 0; 076 for (final T d : this.data) { 077 feats[index++] = this.extractor.extractFeature(d).values; 078 } 079 } 080 081 protected abstract SparseMatrix similarity(); 082}