001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032import org.apache.logging.log4j.Logger; 033import org.apache.logging.log4j.LogManager; 034import org.openimaj.ml.clustering.SimilarityClusterer; 035 036import ch.akuhn.matrix.SparseMatrix; 037import ch.akuhn.matrix.eigenvalues.Eigenvalues; 038 039/** 040 * Built from a mixture of this tutorial: 041 * - http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf 042 * And this implementation: 043 * - https://github.com/peterklipfel/AutoponicsVision/blob/master/SpectralClustering.java 044 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 045 * 046 */ 047public class DoubleSpectralClustering implements SimilarityClusterer<SpectralIndexedClusters>{ 048 final static Logger logger = LogManager.getLogger(DoubleSpectralClustering.class); 049 protected SpectralClusteringConf<double[]> conf; 050 051 /** 052 * @param conf 053 * cluster the eigen vectors 054 */ 055 public DoubleSpectralClustering(SpectralClusteringConf<double[]> conf) { 056 this.conf = conf; 057 } 058 059 protected DoubleSpectralClustering() { 060 } 061 062 @Override 063 public SpectralIndexedClusters clusterSimilarity(SparseMatrix sim) { 064 return cluster(sim); 065 } 066 067 @Override 068 public SpectralIndexedClusters cluster(SparseMatrix data) { 069 // Get the laplacian, solve the eigen problem and choose the best 070 // Use the lowest eigen valued cols as the features, each row is a data item in the reduced feature space 071 Eigenvalues eig = spectralCluster(data); 072 PreparedSpectralClustering prep = new PreparedSpectralClustering(conf); 073 return prep.cluster(eig); 074 } 075 076 077 078 protected Eigenvalues spectralCluster(SparseMatrix data) { 079 // Compute the laplacian of the graph 080 final SparseMatrix laplacian = laplacian(data); 081 Eigenvalues eig = laplacianEigenVectors(laplacian); 082 083 return eig; 084 } 085 086 protected Eigenvalues laplacianEigenVectors(final SparseMatrix laplacian) { 087 // Calculate the eigvectors 088 Eigenvalues eig = conf.eigenChooser.prepare(laplacian); 089 eig.run(); 090 return eig; 091 } 092 093 protected SparseMatrix laplacian(SparseMatrix data) { 094 return conf.laplacian.laplacian(data); 095 } 096 097 @Override 098 public int[][] performClustering(SparseMatrix data) { 099 return this.cluster(data).clusters(); 100 } 101 102 @Override 103 public String toString() { 104 return String.format("%s: {Laplacian: %s, EigenChooser: %s, SpatialClusterer: %s}",simpleName(this),simpleName(conf.laplacian),simpleName(conf.eigenChooser),conf.internal); 105 } 106 107 private String simpleName(Object o) { 108 return o.getClass().getSimpleName(); 109 } 110}