001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032import org.apache.log4j.Logger; 033import org.openimaj.feature.DoubleFV; 034import org.openimaj.feature.DoubleFVComparison; 035import org.openimaj.feature.FeatureExtractor; 036import org.openimaj.ml.clustering.SimilarityClusterer; 037 038import ch.akuhn.matrix.SparseMatrix; 039 040/** 041 * Wraps the functionality of a {@link SimilarityClusterer} around a dataset 042 * 043 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 044 * 045 * @param <T> 046 */ 047public class NormalisedSimilarityDoubleClustererWrapper<T> extends DoubleFVSimilarityFunction<T> { 048 049 private double eps; 050 051 /** 052 * 053 * @param extractor 054 * @param eps 055 */ 056 public NormalisedSimilarityDoubleClustererWrapper(FeatureExtractor<DoubleFV, T> extractor, double eps) { 057 super(extractor); 058 this.eps = eps; 059 } 060 061 Logger logger = Logger.getLogger(NormalisedSimilarityDoubleClustererWrapper.class); 062 063 @Override 064 protected SparseMatrix similarity() { 065 final SparseMatrix mat = new SparseMatrix(feats.length, feats.length); 066 final DoubleFVComparison dist = DoubleFVComparison.EUCLIDEAN; 067 double maxD = 0; 068 for (int i = 0; i < feats.length; i++) { 069 for (int j = i; j < feats.length; j++) { 070 double d = dist.compare(feats[i], feats[j]); 071 if (d > eps) 072 d = Double.NaN; 073 else { 074 maxD = Math.max(d, maxD); 075 } 076 mat.put(i, j, d); 077 mat.put(j, i, d); 078 } 079 } 080 final SparseMatrix mat_norm = new SparseMatrix(feats.length, feats.length); 081 for (int i = 0; i < feats.length; i++) { 082 for (int j = i; j < feats.length; j++) { 083 double d = mat.get(i, j); 084 if (Double.isNaN(d)) { 085 continue; 086 } 087 else { 088 d /= maxD; 089 } 090 mat_norm.put(i, j, 1 - d); 091 mat_norm.put(j, i, 1 - d); 092 } 093 } 094 return mat_norm; 095 } 096 097}