001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032 033import org.apache.commons.math.stat.descriptive.moment.Variance; 034import org.apache.log4j.Logger; 035import org.openimaj.feature.DoubleFV; 036import org.openimaj.feature.FeatureExtractor; 037 038import ch.akuhn.matrix.DenseMatrix; 039import ch.akuhn.matrix.Matrix; 040import ch.akuhn.matrix.SparseMatrix; 041 042/** 043 * Construct a similarity matrix using a Radial Basis Function 044 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 045 * 046 * @param <T> 047 */ 048public class RBFSimilarityDoubleClustererWrapper<T> extends DoubleFVSimilarityFunction<T> { 049 050 private double[] var; 051 Logger logger = Logger.getLogger(RBFSimilarityDoubleClustererWrapper.class); 052 053 /** 054 * @param extractor 055 */ 056 public RBFSimilarityDoubleClustererWrapper(FeatureExtractor<DoubleFV,T> extractor) { 057 super(extractor); 058 } 059 060 private void prepareVariance() { 061 this.var = new double[this.feats[0].length]; 062 Matrix m = new DenseMatrix(feats); 063 double[] colArr = new double[this.feats.length]; 064 Variance v = new Variance(); 065 for (int i = 0; i < this.var.length; i++) { 066 m.column(i).storeOn(colArr, 0); 067 this.var[i] = v.evaluate(colArr); 068 } 069 } 070 071 @Override 072 protected SparseMatrix similarity() { 073 prepareVariance(); 074 int N = feats.length; 075 SparseMatrix sim = new SparseMatrix(N,N); 076 for (int i = 0; i < N; i++) { 077 double[] di = feats[i]; 078 sim.put(i,i,1); 079 for (int j = i+1; j < N; j++) { 080 double[] dj = feats[j]; 081 double expInner = 0; 082 // -1*sum((data(i,:)-data(j,:)).^2./(2*my_var)) 083 for (int k = 0; k < dj.length; k++) { 084 double kv = di[k] - dj[k]; 085 expInner += (kv * kv) / (2 * this.var[k]); 086 } 087 088 double v = Math.exp(-1 * expInner); 089 sim.put(i, j, v); 090 sim.put(j, i, v); 091 } 092 } 093 return sim; 094 } 095 096 097 098}