001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032import org.openimaj.ml.clustering.SpatialClusterer; 033import org.openimaj.ml.clustering.SpatialClusters; 034import org.openimaj.util.function.Function; 035import org.openimaj.util.pair.IndependentPair; 036 037/** 038 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 039 * @param <DATATYPE> 040 * 041 */ 042public class SpectralClusteringConf<DATATYPE> { 043 /** 044 * A function which can represent itself as a string 045 * 046 * @param <DATATYPE> 047 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 048 */ 049 public static interface ClustererProvider<DATATYPE> 050 extends 051 Function<IndependentPair<double[], double[][]>, SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE>> 052 { 053 @Override 054 public String toString(); 055 } 056 057 protected static class DefaultClustererFunction<DATATYPE> implements ClustererProvider<DATATYPE> { 058 059 private SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE> internal; 060 061 public DefaultClustererFunction(SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE> internal) { 062 this.internal = internal; 063 } 064 065 @Override 066 public SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE> apply( 067 IndependentPair<double[], double[][]> in) 068 { 069 return internal; 070 } 071 072 @Override 073 public String toString() { 074 return internal.toString(); 075 } 076 077 } 078 079 /** 080 * The internal clusterer 081 */ 082 083 ClustererProvider<DATATYPE> internal; 084 085 /** 086 * The graph laplacian creator 087 */ 088 public GraphLaplacian laplacian; 089 090 /** 091 * The method used to select the number of eigen vectors from the lower 092 * valued eigenvalues 093 */ 094 public EigenChooser eigenChooser; 095 096 /** 097 * 098 */ 099 public int skipEigenVectors = 0; 100 101 /** 102 * 103 */ 104 public boolean eigenValueScale = false; 105 106 /** 107 * @param internal 108 * the internal clusterer 109 * @param eigK 110 * the value handed to {@link HardCodedEigenChooser} 111 * 112 */ 113 public SpectralClusteringConf(SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE> internal, int eigK) { 114 this.internal = new DefaultClustererFunction<DATATYPE>(internal); 115 this.laplacian = new GraphLaplacian.Normalised(); 116 this.eigenChooser = new HardCodedEigenChooser(eigK); 117 118 } 119 120 /** 121 * The underlying {@link EigenChooser} is set to an 122 * {@link ChangeDetectingEigenChooser} which looks for a 100x gap between 123 * eigen vectors to select number of clusters. It also insists upon a 124 * maximum of 0.1 * number of data items (so 10 items per cluster) 125 * 126 * @param internal 127 * the internal clusterer 128 * 129 */ 130 public SpectralClusteringConf(SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE> internal) { 131 this.internal = new DefaultClustererFunction<DATATYPE>(internal); 132 this.laplacian = new GraphLaplacian.Normalised(); 133 this.eigenChooser = new ChangeDetectingEigenChooser(100, 0.1); 134 135 } 136 137 /** 138 * @param internal 139 * an internal clusterer 140 * @param lap 141 * the laplacian 142 * @param top 143 * the top eigen vectors 144 */ 145 public SpectralClusteringConf(SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE> internal, 146 GraphLaplacian lap, int top) 147 { 148 this.internal = new DefaultClustererFunction<DATATYPE>(internal); 149 this.laplacian = lap; 150 this.eigenChooser = new HardCodedEigenChooser(top); 151 } 152 153 /** 154 * The underlying {@link EigenChooser} is set to an 155 * {@link ChangeDetectingEigenChooser} which looks for a 100x gap between 156 * eigen vectors to select number of clusters. It also insists upon a 157 * maximum of 0.1 * number of data items (so 10 items per cluster) 158 * 159 * @param internal 160 * the internal clusterer 161 * @param laplacian 162 * the graph laplacian 163 * 164 */ 165 public SpectralClusteringConf(SpatialClusterer<? extends SpatialClusters<DATATYPE>, DATATYPE> internal, 166 GraphLaplacian laplacian) 167 { 168 this.internal = new DefaultClustererFunction<DATATYPE>(internal); 169 this.laplacian = laplacian; 170 this.eigenChooser = new ChangeDetectingEigenChooser(100, 0.1); 171 172 } 173 174 /** 175 * The underlying {@link EigenChooser} is set to an 176 * {@link ChangeDetectingEigenChooser} which looks for a 100x gap between 177 * eigen vectors to select number of clusters. It also insists upon a 178 * maximum of 0.1 * number of data items (so 10 items per cluster) 179 * 180 * @param internal 181 * the internal clusterer 182 * 183 */ 184 public SpectralClusteringConf(ClustererProvider<DATATYPE> internal) { 185 this.internal = internal; 186 this.laplacian = new GraphLaplacian.Normalised(); 187 this.eigenChooser = new ChangeDetectingEigenChooser(100, 0.1); 188 189 } 190 191}