001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.clustering.spectral; 031 032import java.util.Iterator; 033import java.util.List; 034 035import org.apache.log4j.Logger; 036import org.openimaj.experiment.evaluation.cluster.ClusterEvaluator; 037import org.openimaj.experiment.evaluation.cluster.analyser.FullMEAnalysis; 038import org.openimaj.experiment.evaluation.cluster.analyser.FullMEClusterAnalyser; 039import org.openimaj.experiment.evaluation.cluster.processor.Clusterer; 040import org.openimaj.feature.DoubleFVComparison; 041import org.openimaj.knn.DoubleNearestNeighboursExact; 042import org.openimaj.ml.clustering.SpatialClusterer; 043import org.openimaj.ml.clustering.SpatialClusters; 044import org.openimaj.ml.clustering.dbscan.DistanceDBSCAN; 045import org.openimaj.ml.clustering.dbscan.DoubleDBSCANClusters; 046import org.openimaj.ml.clustering.dbscan.DoubleNNDBSCAN; 047import org.openimaj.ml.clustering.dbscan.SparseMatrixDBSCAN; 048import org.openimaj.ml.dataset.WineDataset; 049import org.openimaj.util.function.Function; 050import org.openimaj.util.pair.DoubleObjectPair; 051 052import ch.akuhn.matrix.SparseMatrix; 053import ch.akuhn.matrix.Vector; 054import ch.akuhn.matrix.eigenvalues.AllEigenvalues; 055import ch.akuhn.matrix.eigenvalues.Eigenvalues; 056 057/** 058 * Perform spectral clustering experiments using the Wine Dataset 059 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 060 * 061 */ 062public class WineDatasetExperiment { 063 private static final int MAXIMUM_DISTANCE = 300; 064 private static Logger logger = Logger.getLogger(WineDatasetExperiment.class); 065 066 /** 067 * @param args 068 */ 069 public static void main(String[] args) { 070 WineDataset ds = new WineDataset(2,3); 071 072// logger.info("Clustering using spectral clustering"); 073// DoubleSpectralClustering clust = prepareSpectralClustering(); 074// ClustererWrapper spectralWrapper = new NormalisedSimilarityDoubleClustererWrapper<double[]>( 075// ds, 076// new WrapperExtractor(), 077// clust, 078// MAXIMUM_DISTANCE 079// ); 080// evaluate(ds, clust); 081// logger.info("Clustering using DBScan"); 082// DoubleDBSCAN dbScan = prepareDBScane(); 083// ClustererWrapper dbScanWrapper = new NormalisedSimilarityDoubleClustererWrapper<double[]>( 084// ds, 085// new WrapperExtractor(), 086// dbScan, 087// MAXIMUM_DISTANCE 088// ); 089// evaluate(ds, dbScan); 090 091 logger.info("Clustering using modified spectral clustering"); 092 DoubleSpectralClustering clustCSP = prepareCSPSpectralClustering(ds); 093 Function<List<double[]>,SparseMatrix> func = new RBFSimilarityDoubleClustererWrapper<double[]>(new DummyExtractor()); 094 evaluate(ds, clustCSP, func); 095 } 096 097 private static DoubleSpectralClustering prepareCSPSpectralClustering(WineDataset ds) { 098 SpatialClusterer<? extends SpatialClusters<double[]>, double[]> cl = null; 099 // Creater the spectral clustering 100 SpectralClusteringConf<double[]> conf = new SpectralClusteringConf<double[]>(cl ); 101 conf.eigenChooser = new EigenChooser() { 102 103 @Override 104 public Eigenvalues prepare(SparseMatrix laplacian) { 105 Eigenvalues eig = new AllEigenvalues(laplacian); 106 return eig; 107 } 108 109 @Override 110 public int nEigenVectors(Iterator<DoubleObjectPair<Vector>> vals, int totalEigenVectors) { 111 // TODO Auto-generated method stub 112 return 0; 113 } 114 }; 115 DoubleSpectralClustering clust = new DoubleSpectralClustering(conf); 116 return clust; 117 } 118 119 private static SparseMatrixDBSCAN prepareDBScane() { 120 // Creater the spectral clustering 121 double epss = 0.5; 122 SparseMatrixDBSCAN inner = new DistanceDBSCAN(epss, 1); 123 return inner; 124 } 125 126 private static DoubleSpectralClustering prepareSpectralClustering() { 127 // Creater the spectral clustering 128 double epss = 0.6; 129 SpatialClusterer<DoubleDBSCANClusters,double[]> inner = new DoubleNNDBSCAN(epss, 2,new DoubleNearestNeighboursExact.Factory(DoubleFVComparison.EUCLIDEAN)); 130 SpectralClusteringConf<double[]> conf = new SpectralClusteringConf<double[]>( 131 inner 132 ); 133// conf.eigenChooser = new AutoSelectingEigenChooser(100, 1.0); 134 conf.eigenChooser = new HardCodedEigenChooser(10); 135 DoubleSpectralClustering clust = new DoubleSpectralClustering(conf); 136 return clust; 137 } 138 139 private static void evaluate(WineDataset ds, Clusterer<SparseMatrix> clust, Function<List<double[]>, SparseMatrix> func) { 140 ClusterEvaluator<SparseMatrix, FullMEAnalysis> eval = new ClusterEvaluator<SparseMatrix, FullMEAnalysis>(clust,ds,func,new FullMEClusterAnalyser()); 141 int[][] evaluate = eval.evaluate(); 142 logger.info("Expected Classes: " + ds.size()); 143 logger.info("Detected Classes: " + evaluate.length); 144 FullMEAnalysis res = eval.analyse(evaluate); 145 System.out.println(res.getSummaryReport()); 146 } 147}