001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.evaluation; 031 032import gov.sandia.cognition.math.matrix.Matrix; 033import gov.sandia.cognition.math.matrix.mtj.SparseMatrix; 034 035import java.util.List; 036 037import org.apache.logging.log4j.Logger; 038import org.apache.logging.log4j.LogManager; 039 040import org.openimaj.ml.linear.learner.BilinearLearnerParameters; 041import org.openimaj.ml.linear.learner.BilinearSparseOnlineLearner; 042import org.openimaj.ml.linear.learner.loss.LossFunction; 043import org.openimaj.ml.linear.learner.loss.MatLossFunction; 044import org.openimaj.util.pair.Pair; 045 046public class MeanSumLossEvaluator extends BilinearEvaluator { 047 Logger logger = LogManager.getLogger(MeanSumLossEvaluator.class); 048 049 @Override 050 public double evaluate(List<Pair<Matrix>> data) { 051 final Matrix u = learner.getU(); 052 final Matrix w = learner.getW(); 053 final Matrix bias = learner.getBias(); 054 final double sumloss = sumLoss(data, u, w, bias, learner.getParams()); 055 return sumloss; 056 } 057 058 public double sumLoss(List<Pair<Matrix>> pairs, Matrix u, Matrix w, Matrix bias, BilinearLearnerParameters params) { 059 LossFunction loss = params.getTyped(BilinearLearnerParameters.LOSS); 060 loss = new MatLossFunction(loss); 061 double total = 0; 062 int i = 0; 063 for (final Pair<Matrix> pair : pairs) { 064 final Matrix X = pair.firstObject(); 065 final Matrix Y = pair.secondObject(); 066 final SparseMatrix Yexp = BilinearSparseOnlineLearner.expandY(Y); 067 final Matrix expectedAll = u.transpose().times(X.transpose()).times(w); 068 loss.setY(Yexp); 069 loss.setX(expectedAll); 070 if (bias != null) 071 loss.setBias(bias); 072 logger.debug("Testing pair: " + i); 073 total += loss.eval(null); // Assums an identity w. 074 i++; 075 } 076 total /= i; 077 078 return total; 079 } 080}