001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.experiments.sinabill; 031 032import gnu.trove.set.hash.TIntHashSet; 033import gov.sandia.cognition.math.matrix.Matrix; 034import gov.sandia.cognition.math.matrix.MatrixFactory; 035 036import java.io.File; 037import java.io.IOException; 038import java.util.ArrayList; 039import java.util.List; 040 041import org.openimaj.io.IOUtils; 042import org.openimaj.math.matrix.CFMatrixUtils; 043import org.openimaj.ml.linear.data.BillMatlabFileDataGenerator; 044import org.openimaj.ml.linear.data.BillMatlabFileDataGenerator.Mode; 045import org.openimaj.ml.linear.evaluation.BilinearEvaluator; 046import org.openimaj.ml.linear.evaluation.RootMeanSumLossEvaluator; 047import org.openimaj.ml.linear.learner.BilinearLearnerParameters; 048import org.openimaj.ml.linear.learner.BilinearSparseOnlineLearner; 049import org.openimaj.ml.linear.learner.init.SingleValueInitStrat; 050import org.openimaj.ml.linear.learner.init.SparseZerosInitStrategy; 051import org.openimaj.ml.linear.learner.loss.MatSquareLossFunction; 052import org.openimaj.util.pair.Pair; 053 054public class BillAustrianExperiments extends BilinearExperiment { 055 056 public static void main(String[] args) throws IOException { 057 final BillAustrianExperiments exp = new BillAustrianExperiments(); 058 exp.performExperiment(); 059 } 060 061 @Override 062 public void performExperiment() throws IOException { 063 final BilinearLearnerParameters params = new BilinearLearnerParameters(); 064 params.put(BilinearLearnerParameters.ETA0_U, 0.02); 065 params.put(BilinearLearnerParameters.ETA0_W, 0.02); 066 params.put(BilinearLearnerParameters.LAMBDA, 0.001); 067 params.put(BilinearLearnerParameters.BICONVEX_TOL, 0.01); 068 params.put(BilinearLearnerParameters.BICONVEX_MAXITER, 10); 069 params.put(BilinearLearnerParameters.BIAS, true); 070 params.put(BilinearLearnerParameters.ETA0_BIAS, 0.5); 071 params.put(BilinearLearnerParameters.WINITSTRAT, new SingleValueInitStrat(0.1)); 072 params.put(BilinearLearnerParameters.UINITSTRAT, new SparseZerosInitStrategy()); 073 params.put(BilinearLearnerParameters.LOSS, new MatSquareLossFunction()); 074 final BillMatlabFileDataGenerator bmfdg = new BillMatlabFileDataGenerator( 075 new File(MATLAB_DATA()), 076 98, 077 true 078 ); 079 prepareExperimentLog(params); 080 final BilinearSparseOnlineLearner learner = new BilinearSparseOnlineLearner(params); 081 learner.reinitParams(); 082 TIntHashSet seenTraining = new TIntHashSet(); 083 for (int i = 0; i < bmfdg.nFolds(); i++) { 084 logger.debug("Fold: " + i); 085 086 bmfdg.setFold(i, Mode.TEST); 087 final List<Pair<Matrix>> testpairs = new ArrayList<Pair<Matrix>>(); 088 while (true) { 089 final Pair<Matrix> next = bmfdg.generate(); 090 if (next == null) 091 break; 092 testpairs.add(next); 093 } 094 int j = 0; 095 logger.debug("...training"); 096 bmfdg.setFold(i, Mode.TRAINING); 097 while (true) { 098 final Pair<Matrix> next = bmfdg.generate(); 099 if(seenTraining.contains(j)) { 100 logger.debug("...skipping item " + j); 101 j++; 102 continue; 103 } 104 seenTraining.add(j); 105 if (next == null) 106 break; 107 logger.debug("...trying item " + j); 108 learner.process(next.firstObject(), next.secondObject()); 109 logger.debug("...done processing item " + j); 110 j++; 111 112 } 113 final Matrix u = learner.getU(); 114 final Matrix w = learner.getW(); 115 final Matrix bias = MatrixFactory.getDenseDefault().copyMatrix(learner.getBias()); 116 final BilinearEvaluator eval = new RootMeanSumLossEvaluator(); 117 eval.setLearner(learner); 118 final double loss = eval.evaluate(testpairs); 119 logger.debug(String.format("Saving learner, Fold %d, Item %d", i, j)); 120 final File learnerOut = new File(FOLD_ROOT(i), String.format("learner_%d", j)); 121 IOUtils.writeBinary(learnerOut, learner); 122 logger.debug("W row sparcity: " + CFMatrixUtils.rowSparsity(w)); 123 logger.debug("U row sparcity: " + CFMatrixUtils.rowSparsity(u)); 124 final Boolean biasMode = learner.getParams().getTyped(BilinearLearnerParameters.BIAS); 125 if (biasMode) { 126 logger.debug("Bias: " + CFMatrixUtils.diag(bias)); 127 } 128 logger.debug(String.format("... loss: %f", loss)); 129 } 130 } 131 132}