001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.init; 031 032import gov.sandia.cognition.math.matrix.Matrix; 033import gov.sandia.cognition.math.matrix.MatrixFactory; 034import gov.sandia.cognition.math.matrix.mtj.SparseMatrix; 035 036import java.util.Random; 037 038public class SparseRowRandomInitStrategy implements InitStrategy { 039 MatrixFactory<? extends Matrix> smf = MatrixFactory.getSparseDefault(); 040 private double min; 041 private double max; 042 private Random random; 043 private double sparcity; 044 045 public SparseRowRandomInitStrategy(double min, double max, double sparcity, Random random) { 046 this.min = min; 047 this.max = max; 048 this.random = random; 049 this.sparcity = sparcity; 050 } 051 052 @Override 053 public Matrix init(int rows, int cols) { 054 final SparseMatrix rand = (SparseMatrix) smf.createUniformRandom(rows, cols, min, max, random); 055 final Matrix ret = smf.createMatrix(rows, cols); 056 for (int i = 0; i < rows; i++) { 057 if (this.random.nextDouble() > sparcity) { 058 ret.setRow(i, rand.getRow(i)); 059 } 060 } 061 return ret; 062 } 063}