001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.loss; 031 032import gov.sandia.cognition.math.matrix.Matrix; 033import gov.sandia.cognition.math.matrix.mtj.SparseMatrix; 034import gov.sandia.cognition.math.matrix.mtj.SparseMatrixFactoryMTJ; 035 036public class MatLossFunction extends LossFunction{ 037 038 private LossFunction f; 039 private SparseMatrixFactoryMTJ spf; 040 public MatLossFunction(LossFunction f) { 041 this.f = f; 042 spf = SparseMatrixFactoryMTJ.INSTANCE; 043 } 044 045 @Override 046 public void setX(Matrix X) { 047 super.setX(X); 048 f.setX(X); 049 } 050 051 @Override 052 public void setY(Matrix Y) { 053 super.setY(Y); 054 f.setY(Y); 055 } 056 057 @Override 058 public void setBias(Matrix bias) { 059 super.setBias(bias); 060 f.setBias(bias); 061 } 062 @Override 063 public Matrix gradient(Matrix W) { 064 SparseMatrix ret = spf.createMatrix(W.getNumRows(), W.getNumColumns()); 065 int allRowsY = Y.getNumRows()-1; 066 int allRowsW = W.getNumRows()-1; 067 for (int i = 0; i < Y.getNumColumns(); i++) { 068 this.f.setY(Y.getSubMatrix(0, allRowsY, i, i)); 069 if(bias!=null) this.f.setBias(bias.getSubMatrix(0, allRowsY, i, i)); 070 Matrix w = W.getSubMatrix(0, allRowsW, i, i); 071 Matrix submatrix = f.gradient(w); 072 ret.setSubMatrix(0, i, submatrix); 073 } 074 return ret; 075 } 076 077 @Override 078 public double eval(Matrix W) { 079 double total = 0; 080 f.setBias(this.bias); 081 total += f.eval(W); 082 return total; 083 } 084 085 @Override 086 public boolean isMatrixLoss() { 087 return true; 088 } 089 090}