001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.perceptron; 031 032import java.util.ArrayList; 033import java.util.Arrays; 034import java.util.HashMap; 035import java.util.List; 036import java.util.Map; 037 038import org.openimaj.ml.linear.kernel.VectorKernel; 039import org.openimaj.util.pair.IndependentPair; 040 041/** 042 * An implementation of a simple {@link KernelPerceptron} which works with 043 * double arrays. 044 * 045 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 046 */ 047public class DoubleArrayKernelPerceptron extends KernelPerceptron<double[], PerceptronClass> { 048 049 class WrappedDouble { 050 private double[] d; 051 052 public WrappedDouble(double[] d) { 053 this.d = d; 054 } 055 056 @Override 057 public boolean equals(Object obj) { 058 if (obj instanceof WrappedDouble) { 059 final WrappedDouble that = (WrappedDouble) obj; 060 return Arrays.equals(d, that.d); 061 } 062 return false; 063 } 064 065 @Override 066 public int hashCode() { 067 return Arrays.hashCode(d); 068 } 069 } 070 071 protected List<double[]> supports = new ArrayList<double[]>(); 072 protected List<Double> weights = new ArrayList<Double>(); 073 074 Map<WrappedDouble, Integer> index = new HashMap<WrappedDouble, Integer>(); 075 076 /** 077 * @param k 078 * the kernel 079 */ 080 public DoubleArrayKernelPerceptron(VectorKernel k) { 081 super(k); 082 } 083 084 double[] correct(double[] in) { 085 return in.clone(); 086 } 087 088 protected double mapping(double[] in) { 089 double ret = getBias(); 090 in = correct(in); 091 for (int i = 0; i < supports.size(); i++) { 092 final double alpha = this.weights.get(i); 093 final double[] x_i = correct(this.supports.get(i)); 094 ret += alpha * kernel.apply(IndependentPair.pair(x_i, in)); 095 096 } 097 return ret; 098 } 099 100 @Override 101 public PerceptronClass predict(double[] x) { 102 return PerceptronClass.fromSign(Math.signum(mapping(x))); 103 } 104 105 @Override 106 public void update(double[] xt, PerceptronClass yt, PerceptronClass yt_prime) { 107 final WrappedDouble d = new WrappedDouble(xt); 108 final double updateAmount = this.getUpdateRate() * yt.v(); 109 if (!this.index.containsKey(d)) { 110 this.index.put(d, this.supports.size()); 111 this.supports.add(xt); 112 this.weights.add(updateAmount); 113 } else { 114 final int index = this.index.get(d); 115 this.weights.set(index, this.weights.get(index) + updateAmount); 116 } 117 } 118 119 double getUpdateRate() { 120 return 1; 121 } 122 123 @Override 124 public List<double[]> getSupports() { 125 return this.supports; 126 } 127 128 @Override 129 public List<Double> getWeights() { 130 return this.weights; 131 } 132 133 @Override 134 public double getBias() { 135 double bias = 0; 136 for (final double d : this.weights) { 137 bias += d; 138 } 139 return bias; 140 } 141 142}