001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.perceptron; 031 032import java.util.List; 033 034import org.openimaj.ml.linear.kernel.Kernel; 035import org.openimaj.ml.linear.learner.OnlineLearner; 036 037/** 038 * 039 * @param <INDEPENDANT> 040 * @param <DEPENDANT> 041 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 042 */ 043public abstract class KernelPerceptron<INDEPENDANT, DEPENDANT> implements OnlineLearner<INDEPENDANT, DEPENDANT>{ 044 045 046 Kernel<INDEPENDANT> kernel; 047 protected int errors; 048 049 /** 050 * 051 */ 052 public KernelPerceptron() { 053 } 054 055 /** 056 * @param kernel 057 */ 058 public KernelPerceptron(Kernel<INDEPENDANT> kernel) { 059 this.kernel = kernel; 060 } 061 062 @Override 063 public void process(INDEPENDANT xt, DEPENDANT yt) { 064 DEPENDANT yt_prime = predict(xt); 065 if(!yt_prime.equals(yt)){ 066 update(xt,yt,yt_prime); 067 this.errors ++; 068 } 069 } 070 071 /** 072 * When there is an error in prediction, update somehow 073 * @param xt 074 * @param yt 075 * @param yt_prime 076 */ 077 public abstract void update(INDEPENDANT xt, DEPENDANT yt, DEPENDANT yt_prime) ; 078 079 /** 080 * @return the vectors that form the support 081 */ 082 public abstract List<INDEPENDANT> getSupports(); 083 /** 084 * @return the weights of the support vectors 085 */ 086 public abstract List<Double> getWeights(); 087 088 /** 089 * @return the bias 090 */ 091 public abstract double getBias(); 092 093 /** 094 * @return number of errors made 095 */ 096 public int getErrors(){ 097 return errors; 098 099 } 100 101}