001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.perceptron; 031 032import org.openimaj.ml.linear.kernel.VectorKernel; 033 034/** 035 * 036 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 037 */ 038public class MarginMeanCenteredPerceptron extends MeanCenteredKernelPerceptron{ 039 040 private static final double DEFAULT_MARGIN = 0.1; 041 private double margin = DEFAULT_MARGIN; 042 043 /** 044 * @param kernel 045 * @param margin 046 */ 047 public MarginMeanCenteredPerceptron(VectorKernel kernel, double margin) { 048 super(kernel); 049 this.margin = margin; 050 } 051 /** 052 * @param kernel 053 */ 054 public MarginMeanCenteredPerceptron(VectorKernel kernel) { 055 super(kernel); 056 } 057 058 @Override 059 public void process(double[] xt, PerceptronClass yt) { 060 double val = mapping(xt); 061 PerceptronClass yt_prime = PerceptronClass.fromSign(Math.signum(val)); 062 if(!yt_prime.equals(yt) || Math.abs(val) < margin){ 063 update(xt,yt,yt_prime); 064 this.errors ++; 065 } 066 } 067}