001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.perceptron; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import org.openimaj.math.matrix.MeanVector; 036import org.openimaj.ml.linear.kernel.VectorKernel; 037 038/** 039 * 040 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 041 */ 042public class MeanCenteredKernelPerceptron extends DoubleArrayKernelPerceptron{ 043 MeanVector mv = new MeanVector(); 044 045 /** 046 * @param k 047 */ 048 public MeanCenteredKernelPerceptron(VectorKernel k) { 049 super(k); 050 } 051 052 @Override 053 public void update(double[] xt, PerceptronClass yt, PerceptronClass yt_prime) { 054 mv.update(xt); 055 super.update(xt, yt, yt_prime); 056 } 057 @Override 058 public double[] correct(double[] in) { 059 return center(in); 060 } 061 062 @Override 063 public List<double[]> getSupports() { 064 List<double[]> pre = super.getSupports(); 065 List<double[]> ret = new ArrayList<double[]>(); 066 for (double[] ds : pre) { 067 ret.add(correct(ds)); 068 } 069 return ret; 070 } 071 072 private double[] center(double[] xt) { 073 double[] mvec = mv.vec(); 074 double[] ret = new double[xt.length]; 075 if(mvec == null) return ret; 076 077 for (int i = 0; i < mvec.length; i++) { 078 ret[i] = xt[i] - mvec[i]; 079 } 080 return ret; 081 } 082 083 public double[] getMean() { 084 return this.mv.vec(); 085 } 086 087}