001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.linear.learner.perceptron; 031 032import java.util.Arrays; 033import java.util.List; 034 035import org.openimaj.math.model.EstimatableModel; 036import org.openimaj.ml.linear.learner.OnlineLearner; 037import org.openimaj.util.pair.IndependentPair; 038 039/** 040 * 041 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 042 */ 043public class SimplePerceptron implements OnlineLearner<double[], Integer>, EstimatableModel<double[], Integer> { 044 private static final double DEFAULT_LEARNING_RATE = 0.01; 045 private static final int DEFAULT_ITERATIONS = 1000; 046 double alpha = DEFAULT_LEARNING_RATE; 047 private double[] w; 048 private int iterations = DEFAULT_ITERATIONS; 049 050 private SimplePerceptron(double[] w) { 051 this.w = w; 052 } 053 054 /** 055 * 056 */ 057 public SimplePerceptron() { 058 } 059 060 @Override 061 public void process(double[] pt, Integer clazz) { 062 // System.out.println("Testing: " + Arrays.toString(pt) + " = " + 063 // clazz); 064 if (w == null) { 065 initW(pt.length); 066 } 067 final int y = predict(pt); 068 System.out.println("w: " + Arrays.toString(w)); 069 w[0] = w[0] + alpha * (clazz - y); 070 for (int i = 0; i < pt.length; i++) { 071 w[i + 1] = w[i + 1] + alpha * (clazz - y) * pt[i]; 072 } 073 // System.out.println("neww: " + Arrays.toString(w)); 074 } 075 076 private void initW(int length) { 077 w = new double[length + 1]; 078 w[0] = 1; 079 } 080 081 @Override 082 public Integer predict(double[] x) { 083 if (w == null) 084 return 0; 085 return (w[0] + project(x)) > 0 ? 1 : 0; 086 } 087 088 private double project(double[] x) { 089 double sum = 0; 090 for (int i = 0; i < x.length; i++) { 091 sum += x[i] * w[i + 1]; 092 } 093 return sum; 094 } 095 096 @Override 097 public boolean estimate(List<? extends IndependentPair<double[], Integer>> data) { 098 this.w = new double[] { 1, 0, 0 }; 099 100 for (int i = 0; i < iterations; i++) { 101 iteration(data); 102 103 final double error = calculateError(data); 104 if (error < 0.01) 105 break; 106 } 107 return true; 108 } 109 110 private void iteration(List<? extends IndependentPair<double[], Integer>> pts) { 111 for (int i = 0; i < pts.size(); i++) { 112 final IndependentPair<double[], Integer> pair = pts.get(i); 113 process(pair.firstObject(), pair.secondObject()); 114 } 115 } 116 117 @Override 118 public int numItemsToEstimate() { 119 return 1; 120 } 121 122 protected double calculateError(List<? extends IndependentPair<double[], Integer>> pts) { 123 double error = 0; 124 125 for (int i = 0; i < pts.size(); i++) { 126 final IndependentPair<double[], Integer> pair = pts.get(i); 127 error += Math.abs(predict(pts.get(i).firstObject()) - pair.secondObject()); 128 } 129 130 return error / pts.size(); 131 } 132 133 /** 134 * Compute NaN-coordinate of a point on the hyperplane given 135 * non-NaN-coordinates. Only one x coordinate may be nan. If more NaN are 136 * seen after the first they are assumed to be 0 137 * 138 * @param x 139 * the coordinates, only one may be NaN, all others must be 140 * provided 141 * @return the y-ordinate 142 */ 143 public double[] computeHyperplanePoint(double[] x) { 144 double total = w[0]; 145 int nanindex = -1; 146 final double[] ret = new double[x.length]; 147 for (int i = 0; i < x.length; i++) { 148 double value = x[i]; 149 if (nanindex != -1 && Double.isNaN(value)) { 150 value = 0; 151 } 152 else if (Double.isNaN(value)) { 153 nanindex = i; 154 continue; 155 } 156 ret[i] = value; 157 total += w[i + 1] * value; 158 } 159 if (nanindex != -1) 160 ret[nanindex] = total / -w[nanindex + 1]; 161 return ret; 162 } 163 164 @Override 165 public SimplePerceptron clone() { 166 return new SimplePerceptron(w); 167 } 168 169 public double[] getWeights() { 170 return this.w; 171 } 172}