001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.timeseries.processor; 031 032import java.util.LinkedList; 033 034import org.openimaj.ml.timeseries.TimeSeries; 035import org.openimaj.ml.timeseries.TimeSeriesArithmaticOperator; 036import org.openimaj.ml.timeseries.collection.TimeSeriesCollectionAssignable; 037 038/** 039 * Given time step calculate each timestep such that 040 * value[timeStep(x)] = sum from x-1 to x as n [ timeStep(n) ] 041 * 042 * The exact meaning of "sum" for any given timestep data must be defined. This processor works on any time series, 043 * a function must be implemented to explain how TimeSeries data is to be added. 044 * 045 * This processor implicity assumes that the first time step is "the beggining of the time series" 046 * 047 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 048 * 049 * @param <ALLDATA> 050 * @param <DATA> 051 * @param <TS> 052 */ 053public class IntervalSummationProcessor 054 < 055 ALLDATA, 056 DATA, 057 TS extends 058 TimeSeries<ALLDATA,DATA,TS> 059 & TimeSeriesArithmaticOperator<DATA,TS> 060 & TimeSeriesCollectionAssignable<DATA,TS> 061 > 062 implements TimeSeriesProcessor<ALLDATA,DATA, TS>{ 063 064 private long[] times; 065 066 /** 067 * A processor which maps across given time steps 068 * @param times 069 */ 070 public IntervalSummationProcessor(long[] times) { 071 this.times = times; 072 } 073 074 @Override 075 public void process(TS series) { 076 LinkedList<Long> times = new LinkedList<Long>(); 077 LinkedList<DATA> data = new LinkedList<DATA>(); 078 times.addLast(this.times[0]); 079 long firstTime = series.getTimes()[0]; 080 081 TS interval = series.get(firstTime,this.times[0]); 082 083 long previousTime = -1; 084 if(interval.size() > 0){ 085 long[] intervalTimes = interval.getTimes(); 086 previousTime = intervalTimes[intervalTimes.length - 1] + 1; 087 } 088 else{ 089 previousTime = this.times[0] + 1; 090 } 091 092 data.addLast(interval.sum()); 093 for (int i = 1; i < this.times.length; i++) { 094 long currentTime = this.times[i]; 095 interval = series.get(previousTime,currentTime); 096 if(interval.size() > 0){ 097 long[] intervalTimes = interval.getTimes(); 098 previousTime = intervalTimes[intervalTimes.length - 1] + 1; 099 } 100 else{ 101 previousTime = currentTime + 1; 102 } 103 times.add(currentTime); 104 data.add(interval.sum()); 105 } 106 series.internalAssign(times,data); 107 } 108}