001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.timeseries.processor; 031 032import org.openimaj.ml.regression.LinearRegression; 033import org.openimaj.ml.timeseries.series.DoubleTimeSeries; 034import org.openimaj.util.array.ArrayUtils; 035 036import Jama.Matrix; 037 038/** 039 * Using a {@link LinearRegression} model, a time series is used as input to 040 * calculate the coefficients of a linear regression such that value = b * time 041 * + c 042 * 043 * This is the simplest kind of model that can be applied to a time series 044 * 045 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 046 * 047 */ 048public class LinearRegressionProcessor implements TimeSeriesProcessor<double[], Double, DoubleTimeSeries> { 049 050 private LinearRegression reg; 051 private boolean regdefined; 052 053 /** 054 * Calculate the regression from the same time series inputed 055 */ 056 public LinearRegressionProcessor() { 057 this.regdefined = false; 058 } 059 060 /** 061 * Use reg as the linear regression to predict. The 062 * {@link #process(DoubleTimeSeries)} function simply calls 063 * {@link LinearRegression#predict(Matrix)} with the times in the series as 064 * input 065 * 066 * @param reg 067 */ 068 public LinearRegressionProcessor(LinearRegression reg) { 069 this.reg = reg; 070 this.regdefined = true; 071 } 072 073 @Override 074 public void process(DoubleTimeSeries series) { 075 final Matrix x = new Matrix(new double[][] { ArrayUtils.convertToDouble(series.getTimes()) }).transpose(); 076 if (!regdefined) 077 { 078 this.reg = new LinearRegression(); 079 final Matrix y = new Matrix(new double[][] { series.getData() }).transpose(); 080 reg.estimate(y, x); 081 } 082 final Matrix predicted = this.reg.predict(x); 083 series.set(series.getTimes(), predicted.transpose().getArray()[0]); 084 } 085 086 /** 087 * @param regdefined 088 * if true, process holds its last {@link LinearRegression} 089 */ 090 public void holdreg(boolean regdefined) { 091 this.regdefined = regdefined; 092 } 093 094 /** 095 * @return the {@link LinearRegressionProcessor}'s underlying 096 * {@link LinearRegression} model 097 */ 098 public LinearRegression getRegression() { 099 return this.reg; 100 } 101 102}