001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.ml.timeseries.processor.interpolation; 031 032import org.openimaj.ml.timeseries.processor.interpolation.util.TimeSpanUtils; 033import org.openimaj.ml.timeseries.series.DoubleTimeSeries; 034 035/** 036 * Perform a linear interpolation such that the value of data at time t1 between t0 and t2 = 037 * 038 * data[t1] = data[t0] * (t1 - t0)/(t2-t0) + data[t2] * (t2 - t1)/(t2-t0) 039 * 040 * Note that this means if data is known at t1, then t0 = t1 and data[t1] == data[t0] 041 * 042 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 043 * 044 */ 045public class LinearInterpolationProcessor extends TimeSeriesInterpolation{ 046 047 048 049 /** 050 * @see TimeSeriesInterpolation#TimeSeriesInterpolation(long[]) 051 * @param times 052 */ 053 public LinearInterpolationProcessor(long[] times) { 054 super(times); 055 } 056 057 /** 058 * @see TimeSeriesInterpolation#TimeSeriesInterpolation() 059 */ 060 public LinearInterpolationProcessor() { 061 super(); 062 } 063 064 065 066 /** 067 * @param begin 068 * @param steps 069 * @param delta 070 */ 071 public LinearInterpolationProcessor(long begin, int steps, long delta) { 072 super(begin, steps, delta); 073 } 074 075 /** 076 * @param begin 077 * @param end 078 * @param steps 079 */ 080 public LinearInterpolationProcessor(long begin, long end, int steps) { 081 super(begin, end, steps); 082 } 083 084 /** 085 * @param begin 086 * @param end 087 * @param delta 088 */ 089 public LinearInterpolationProcessor(long begin, long end, long delta) { 090 super(begin, end, delta); 091 } 092 093 @Override 094 public DoubleTimeSeries interpolate(DoubleTimeSeries timeSeries, long[] times) { 095 if(times == null){ 096 times = TimeSpanUtils.getTime(timeSeries.getTimes()[0],timeSeries.getTimes()[timeSeries.size()-1],1l); 097 } 098 double[] values = new double[times.length]; 099 DoubleTimeSeries dataholder = new DoubleTimeSeries(3); 100 double[] holderdata = dataholder.getData(); 101 long[] holdertimes = dataholder.getTimes(); 102 int i = 0; 103 for (long t : times) { 104 timeSeries.get(t, 1, 1,dataholder); 105 if(dataholder.size() == 3){ // In the middle 106 values[i++] = holderdata[1]; 107 } 108 else if(dataholder.size() == 2){ 109 // Either left or right extreme 110 if(holdertimes[0] == t){ 111 values[i++] = holderdata[0]; 112 } 113 else if(holdertimes[1] == t){ 114 values[i++] = holderdata[1]; 115 } 116 else{ 117 // This is the only point we should interpolate 118 double sum = holdertimes[1] - holdertimes[0]; 119 double weightLeft = sum - (t - holdertimes[0]); 120 double weightRight = sum - (holdertimes[1] - t); 121 values[i++] = ((holderdata[0] * weightLeft) + (holderdata[1] * weightRight))/sum; 122 } 123 } 124 else{ 125 values[i++] = holderdata[0]; 126 } 127 } 128 return new DoubleTimeSeries(times,values); 129 } 130 131}