001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.pgm.vb.lda.mle; 031 032import org.openimaj.pgm.util.Corpus; 033 034import cern.jet.random.engine.MersenneTwister; 035 036/** 037 * Initialisation strategies for the beta matrix in the maximum liklihood LDA. 038 * Specifically implementors are expected to initialise the sufficient statistics 039 * of beta (i.e. topicWord and topicTotal s.t. Beta_ij = topicWord_ij / topicTotal_i 040 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 041 * 042 */ 043public interface LDABetaInitStrategy{ 044 /** 045 * Given a model and the corpus initialise the model's sufficient statistics 046 * @param model 047 * @param corpus 048 */ 049 public void initModel(LDAModel model, Corpus corpus); 050 051 /** 052 * initialises beta randomly s.t. each each topicWord >= 1 and < 2 053 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 054 * 055 */ 056 public static class RandomBetaInit implements LDABetaInitStrategy{ 057 private MersenneTwister random; 058 059 /** 060 * unseeded random 061 */ 062 public RandomBetaInit() { 063 random = new MersenneTwister(); 064 } 065 066 /** 067 * seeded random 068 * @param seed 069 */ 070 public RandomBetaInit(int seed) { 071 random = new MersenneTwister(seed); 072 } 073 @Override 074 public void initModel(LDAModel model, Corpus corpus) { 075 for (int topicIndex = 0; topicIndex < model.ntopics; topicIndex++) { 076 for (int wordIndex = 0; wordIndex < corpus.vocabularySize(); wordIndex++) { 077 double topicWord = 1 + random.nextDouble(); 078 model.incTopicWord(topicIndex,wordIndex,topicWord); 079 model.incTopicTotal(topicIndex, topicWord); 080 } 081 } 082 } 083 } 084}