001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.pgm.vb.lda.mle; 031 032import org.openimaj.pgm.util.Document; 033import org.openimaj.util.array.SparseIntArray.Entry; 034 035/** 036 * The state of the E step of the MLE LDA 037 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 038 * 039 */ 040public class LDAVariationlState{ 041 /** 042 * the n'th unique word in a document's probability for each topic 043 */ 044 public double[][] phi; 045 /** 046 * Useful for calculating the sumphi for a given document 047 */ 048 public double[] oldphi; 049 /** 050 * the dirichlet parameter for the topic multinomials 051 */ 052 public double[] varGamma; 053 054 /** 055 * The liklihood of the current topic sufficient statistics and variational parameters 056 */ 057 public double likelihood; 058 /** 059 * The old liklihood 060 */ 061 public double oldLikelihood; 062 /** 063 * The current LDAModel (i.e. the current sufficient statistics 064 */ 065 public LDAModel state; 066 /** 067 * Holds the first derivative of the gamma 068 */ 069 public double[] digamma; 070 071 072 int iteration; 073 074 075 /** 076 * The variational state holds phi and gamma states as well as 077 * information for convergence of the E step. 078 * @param state 079 */ 080 public LDAVariationlState(LDAModel state) { 081 this.oldphi = new double[state.ntopics]; 082 this.varGamma = new double[state.ntopics]; 083 this.digamma = new double[state.ntopics]; 084 this.state = state; 085 } 086 087 /** 088 * initialises the phi and sets everything to 0 089 * @param doc 090 */ 091 public void prepare(Document doc){ 092 this.phi = new double[doc.countUniqueWords()][state.ntopics]; 093 likelihood = 0; 094 oldLikelihood = Double.NEGATIVE_INFINITY; 095 for (int topici = 0; topici < phi.length; topici++) { 096 varGamma[topici] = this.state.alpha; 097 digamma[topici] = 0; // used to calculate likelihood 098 int wordi = 0; 099 for (Entry wordCount : doc.getVector().entries()) { 100 phi[wordi][topici] = 1f/this.state.ntopics; 101 varGamma[topici] += (double)wordCount.value / this.state.ntopics; 102 wordi++; 103 } 104 } 105 this.iteration = 0; 106 } 107}