1 /** 2 * Copyright (c) 2011, The University of Southampton and the individual contributors. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without modification, 6 * are permitted provided that the following conditions are met: 7 * 8 * * Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * * Redistributions in binary form must reproduce the above copyright notice, 12 * this list of conditions and the following disclaimer in the documentation 13 * and/or other materials provided with the distribution. 14 * 15 * * Neither the name of the University of Southampton nor the names of its 16 * contributors may be used to endorse or promote products derived from this 17 * software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 26 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 package org.openimaj.image.processing.convolution; 31 32 import static java.lang.Math.exp; 33 34 import org.openimaj.image.FImage; 35 import org.openimaj.math.util.FloatArrayStatsUtils; 36 37 /** 38 * Simple 2D Gaussian convolution. In most cases the {@link FGaussianConvolve} 39 * filter will do the same thing, but much much faster! 40 * 41 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 42 * 43 */ 44 public class Gaussian2D extends FConvolution { 45 46 /** 47 * Construct with given kernel size and variance. 48 * 49 * @param width 50 * kernel width 51 * @param height 52 * kernel height 53 * @param sigma 54 * variance 55 */ 56 public Gaussian2D(int width, int height, float sigma) { 57 super(createKernelImage(width, height, sigma)); 58 } 59 60 /** 61 * Construct with given kernel size and variance. 62 * 63 * @param size 64 * kernel width/height 65 * @param sigma 66 * standard deviation 67 */ 68 public Gaussian2D(int size, float sigma) { 69 super(createKernelImage(size, size, sigma)); 70 } 71 72 /** 73 * Create a kernel image with given kernel size and standard deviation. 74 * 75 * @param size 76 * image height/width. 77 * @param sigma 78 * standard deviation. 79 * @return new kernel image. 80 */ 81 public static FImage createKernelImage(int size, float sigma) { 82 return createKernelImage(size, size, sigma); 83 } 84 85 /** 86 * Create a kernel image with given kernel size and standard deviation. 87 * 88 * @param width 89 * image width. 90 * @param height 91 * image height. 92 * @param sigma 93 * standard deviation. 94 * @return new kernel image. 95 */ 96 public static FImage createKernelImage(int width, int height, float sigma) { 97 final FImage f = new FImage(width, height); 98 final int hw = (width - 1) / 2; 99 final int hh = (height - 1) / 2; 100 final float sigmasq = sigma * sigma; 101 102 for (int y = -hh, j = 0; y <= hh; y++, j++) { 103 for (int x = -hw, i = 0; x <= hw; x++, i++) { 104 final int radsqrd = x * x + y * y; 105 f.pixels[j][i] = (float) exp(-radsqrd / (2 * sigmasq)); 106 } 107 } 108 final float sum = FloatArrayStatsUtils.sum(f.pixels); 109 return f.divideInplace(sum); 110 } 111 }