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Preface
OpenIMAJ is a set of libraries and tools for multimedia content analysis and content generation. OpenIMAJ is very broad and
contains everything from state-of-the-art computer vision (e.g. SIFT descriptors, salient region detection, face detection, etc.) and
advanced data clustering, through to software that performs analysis on the content, layout and structure of webpages.

OpenIMAJ is primarily written in pure Java and, as such, is completely platform independent. The video capture and hardware
libraries contain some native code but Linux (x86, x86_64 and ARM CPUs are supported), OSX and Windows are supported out of
the box (under both 32 and 64 bit JVMs). It is possible to write programs that use the libraries in any JVM language that supports
Java interoperability, such as Groovy, Jython, JRuby or Scala. OpenIMAJ can even be run on Android phones and tablets.

The OpenIMAJ software is structured into a number of modules. The modules can be used independently, so if, for instance, you
were developing data clustering software using OpenIMAJ you wouldn’t need to acquire the modules related to images or text.
The list on the following page illustrates the modules and summarises the functionality in each component.

This tutorial aims to instruct the reader on how to get up and running writing code using OpenIMAJ. Currently the tutorial covers
the following areas:

1. Getting started with OpenIMAJ using Maven

2. Processing your first image

3. Introduction to clustering, segmentation and connected components

4. Processing video

5. Finding faces

6. Global image features

7. SIFT and feature matching

In the future we hope to add more content to the tutorial covering the following:

• Basic text analysis

• Image and video indexing using ImageTerrier

• Compiling OpenIMAJ from source

• Tracking features in video

• Audio processing

• Speech recognition

• Hardware interfaces

• Advanced local features

• Scalable processing with OpenIMAJ/Hadoop

• Machine learning

• Building a bibliography of the techniques used in your code.
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archetypes

Maven archetypes for OpenIMAJ.

openimaj-quickstart-archetype

Maven quickstart archetype for OpenIMAJ.

openimaj-subproject-archetype

Maven archetype for creating OpenIMAJ subprojects with the most of the standard configuration completed
automatically.

core

Submodule for modules containing functionality used across the OpenIMAJ libraries.

core

Core library functionality concerned with general programming problems rather than multimedia specific functionality.
Includes I/O utilities, randomisation, hashing and type conversion.

core-image

Core definitions of images, pixels and connected components. Also contains interfaces for processors for these basic
types. Includes loading, saving and displaying images.

core-video

Core definitions of a video type and functionality for displaying and processing videos.

core-audio

Core definitions of audio streams and samples/chunks. Also contains interfaces for processors for these basic types.

core-math

Mathematical implementations including geometric, matrix and statistical operators.

core-feature

Core notion of features, usually denoted as arrays of data. Definitions of features for all primitive types, features with
location and lists of features (both in memory and on disk).

core-experiment

Classes to formally describe experiments and evaluations, with support for automatically evaluating their results.

core-citation

Tools for annotating code with publication references and automatically generating bibliographies for your code.
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core-aop-support

Core support for Aspect Oriented Programming and Bytecode manipulation as used in core-citation and core-
experiment.

image

Submodule for image related functionality.

image-processing

Implementations of various image, pixel and connected component processors (resizing, convolution, edge
detection, ...).

image-local-features

Methods for the extraction of local features. Local features are descriptions of regions of images (SIFT, ...) selected by
detectors (Difference of Gaussian, Harris, ...).

image-feature-extraction

Methods for the extraction of low-level image features, including global image features and pixel/patch classification
models.

faces

Implementation of a flexible face-recognition pipeline, including pluggable detectors, aligners, feature extractors and
recognisers.

image-annotation

Methods for describing automatic image annotators.

object-detection

Support for object detection, including a haar-cascade implementation.

image-indexing-retrieval

Subproject for CBIR related components.

vector-image

Support for vector images using the Batik SVG library.

camera-calibration

Camera calibration techniques and associated code.

multiview

OpenIMAJ Multiview reconstruction and 3D imaging library.
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video

Sub-modules containing support for analysing and processing video.

video-processing

Various video processing algorithms, such as shot-boundary detection.

xuggle-video

Plugin to use Xuggler as a video source. Allows most video formats to be read into OpenIMAJ.

gstreamer-video

...

audio

Submodule for audio processing and analysis related functionality.

audio-processing

Implementations of various audio processors (e.g. multichannel conversion, volume change, ...).

machine-learning

Sub-module for machine-learning libraries.

clustering

Various clustering algorithm implementations for all primitive types including random, random forest, K-Means (Exact,
Hierarchical and Approximate), ...

nearest-neighbour

Implementations of K-Nearest-Neighbour methods, including approximate methods.

machine-learning

The OpenIMAJ Machine Learning Library contains implementations of optimised machine learning techniques that
can be applied to OpenIMAJ structures and features.

text

Text Analysis functionality for OpenIMAJ.

nlp

The OpenIMAJ NLP Library contains a text pre-processing pipeline which goes from raw unstructured text to part of
speech tagged stemmed text.

thirdparty

Useful third-party libraries (possibly originally written in other languages) that have been ported to Java and integrated
with OpenIMAJ. Not all modules have the same license.
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klt-tracker

A port of Stan Birchfield's Kanade-Lucas-Tomasi tracker to OpenIMAJ. See http://www.ces.clemson.edu/~stb/klt/.

tld

A port of Georg Nebehay's tracker https://github.com/gnebehay/OpenTLD originally created by Zdenek Kalal https://
github.com/zk00006/OpenTLD.

ImprovedArgs4J

IREval

A modified version of the IREval module (version 4.12) from the lemur project with extensions to better integrate with
OpenIMAJ. See http://www.lemurproject.org.

FaceTracker

Port of Jason Mora Saragih's FaceTracker to Java using OpenIMAJ. FaceTracker is an implementation of a facial model
tracker using a Constrained Local Model.

processing-core

MatrixLib

JTransforms

JTransforms is the first, open source, multithreaded FFT library written in pure Java. Currently, four types of transforms
are available: Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Discrete Sine Transform (DST) and
Discrete Hartley Transform (DHT). The code is derived from General Purpose FFT Package written by Takuya Ooura
and from Java FFTPack written by Baoshe Zhang. This version has been modified to daemonize threads and stop any
application using the library waiting after execution has finished, and is based on revision 29 of the svn version of the
code from 2014-05-18.

demos

Demos showing the functionality of OpenIMAJ.

demos

Demos showing the use of OpenIMAJ.

sandbox

A project for various tests that don't quite constitute demos but might be useful to look at.

touchtable

Playground for the ECS touchtable.

SimpleMosaic

Demo showing SIFT matching with a Homography model to achieve image mosaicing.
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CampusView

Demo showing how we used OpenIMAJ to create a Street-View-esq capture system.

ACMMM-Presentation

The OpenIMAJ presentation for ACMMM 2011. Unlike a normal presentation, this one isn't PowerPoint, but is actually
an OpenIMAJ Demo App!.

examples

Example code snippets showing specific functionalities.

SimpleOCR

Simple (numerical) OCR using template matching to extract the timestamps embedded in GlacsWeb time-lapse videos.

knowledge

Submodule for modules related to knowledge representation and reasoning.

core-rdf

Core support for the Resource Description Framework (RDF), including object-rdf mapping.

ontologies

Submodule for modules which each represent a specific ontology represented in java.

sioc

geocoder

Geocoding and reverse geocoding utilities.

test-resources

Resources for running OpenIMAJ JUnit tests.

tools

Sub-modules containing commandline tools exposing OpenIMAJ functionality.

core-tool

Core library for building openimaj tools.

GlobalFeaturesTool

A tool for extracting various global features from images.

ClusterQuantiserTool

Tool for clustering and quantising features.



The OpenIMAJ Modules

xii The OpenIMAJ Tutorial (1.3.10)

LocalFeaturesTool

Tool for extracting local image features.

FaceTools

Tools for detecting, extracting and comparing faces within images.

FeatureVisualisation

Tools for visualising certain types of image feature.

CityLandscapeClassifier

Tool for classifying images as cityscapes (or images containing man-made objects) or landscapes. Based on the edge
direction coherence vector.

WebTools

Tools and utilities for extracting info from web-pages.

OCRTools

Tools for training and testing OCR.

ImageCollectionTool

Tool for extracting images from collections (zip, gallery, video etc.).

SimilarityMatrixTool

A tool for performing operations on Similarity Matrices.

TwitterPreprocessingTool

Tool for applying a text preprocessing pipeline to twitter tweets.

RedditHarvester

A tool for harvesting posts and comments from reddit.

picslurper

Tool for grabbing all the images from a social media stream and holding on to some simple stats.

ReferencesTool

Tool for running an OpenIMAJ program and extracting the references for used methods and classes.

openimaj-processing

Set of tools for integrating OpenIMAJ with processing.
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CBIRTools

Tools for content-based image indexing and retrieval.

hadoop

Sub-modules for integrating OpenIMAJ with Apache Hadoop to allow Map-Reduce style distributed processing.

core-hadoop

Reusable wrappers and helpers to access and create sequence-files and map-reduce jobs.

tools

Tools that provide multimedia analysis algorithms expressed as Map-Reduce jobs that can be run on a Hadoop cluster.

core-hadoop-tool

Tool for clustering and quantising features using Map-Reduce jobs on a Hadoop cluster.

HadoopFastKMeans

Distributed feature clustering tool.

HadoopDownloader

Distributed download tool.

HadoopLocalFeaturesTool

Distributed local image feature extraction tool.

SequenceFileTool

Tool for building, inspecting and extracting Hadoop SequenceFiles.

HadoopGlobalFeaturesTool

Distributed global image feature extraction tool.

HadoopClusterQuantiserTool

Distributed feature quantisation tool.

HadoopTwitterPreprocessingTool

Tool for clustering and quantising features using Map-Reduce jobs on a Hadoop cluster.

HadoopTwitterTokenTool

Tool for clustering and quantising features using Map-Reduce jobs on a Hadoop cluster.

SequenceFileIndexer

Tool for building an index of the keys in a Hadoop SequenceFile.
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HadoopEXIFTool

Tool for extracting EXIF information from images on a Hadoop cluster.

SequenceFileMerger

Base for tools built on hadoop.

HadoopImageIndexer

...

streams

Sub-modules for stream provision, processing and analysis.

storm

Sub-modules for integrating OpenIMAJ with Storm to allow distrbuted stream processing.

core-storm

The main Storm dependency and some extra utility classes specific to OpenIMAJ.

tools

Tools that provide multimedia analysis algorithms expressed as Storm topology that can be run locally or on a
Storm cluster.

StormTwitterPreprocessingTool

Tool for processing tweets on Storm.

core-storm-tool

Base for tools built on top of storm.

common-stream

Classes providing access to common types of streaming data (twitter, irc, wikimedia edits, etc) as well as providing
methods and techniques for working with streams.

web

Sub-modules containing support for analysing and processing web-pages.

core-web

Implementation of a programatic offscreen web browser and utility functions.

webpage-analysis

Utilities for analysing the content and visual layout of a web-page.
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readability4j

Readability4J is a partial re-implementation of the original readability.js script in Java. Many modifications have been
made however.

twitter

The twitter project contains tools with which to read JSON data from the twitter API and process the data.

data-scraping

Utility methods and classes for extracting data and information from the web.

hardware

Sub-modules containing interfaces to hardware devices that we've used in projects built using OpenIMAJ.

core-video-capture

Cross-platform video capture interface using a lightweight native interface. Supports 32 and 64 bit JVMs under Linux,
OSX and Windows.

serial-driver

Interface to hardware devices that connect to serial or USB-serial ports.

gps

Interface to GPS devices that support the NMEA protocol.

compass

Interface to an OceanServer OS5000 digital compass.

nmea-parser

Contains a parser for NMEA sentences written in Groovy.

kinect

The OpenIMAJ Kinect Library contains the core classes and native code required interface with the Kinect device.

turntable

Integration with our serially controlled turntable.

core-gpgpu

content

Libraries for multimedia content creation.
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slideshow

A library for creating slideshows and presentations that can contain interactive demos that utilise all OpenIMAJ
components.

animation

Code to help make an animation of data/models/etc.

visualisations

A library that contains classes for visualising various different features, such as audio and video.

ide-integration

Plugins to aid OpenIMAJ development in various IDE's.

documentation

Submodule for documentation.

tutorial

The OpenIMAJ tutorial.

tutorial-content

The content of the OpenIMAJ tutorial.

tutorial-pdf

OpenIMAJ tutorial in PDF format.

tutorial-html

OpenIMAJ Tutorial in HTML format.

tutorial-code

The source-code for the OpenIMAJ Tutorial.
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Part I. OpenIMAJ Fundamentals
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Chapter 1. Getting started with OpenIMAJ using Maven
Apache Maven is a project management tool. Maven performs tasks such as automatic dependency management, project packaging
and more. We strongly encourage anyone using OpenIMAJ to use Maven to get their own project started. We’ve even provided
a Maven archetype for OpenIMAJ (basically a project template) that lets you get started programming with OpenIMAJ quickly.

Tip

You can find out more about Apache Maven at http://maven.apache.org.

OpenIMAJ requires Maven 2 or 3; if you want to build OpenIMAJ from source you will need Maven 3. You can check if you have
Maven installed already by opening a terminal (or DOS command prompt) and typing:

mvn -version

If Maven is found the, version will be printed. If the version is less than 2.2.1, or Maven was not found, go to http://maven.apache.org
to download and install it. Once you’ve installed Maven try the above command to test that it is working.

To create a new OpenIMAJ project, run the following command:

mvn -DarchetypeGroupId=org.openimaj -DarchetypeArtifactId=openimaj-quickstart-archetype \
 -DarchetypeVersion=1.3.10  archetype:generate

Maven will then prompt you for some input. For the groupId, enter something that identifies you or a group that you belong to
(for example, I might choose uk.ac.soton.ecs.jsh2 for personal projects, or org.openimaj for OpenIMAJ sub-projects). For
the artifactId enter a name for your project (for example, OpenIMAJ-Tutorial01). The version can be left as 1.0-SNAPSHOT,
and the default package is also OK. Finally enter Y and press return to confirm the settings. Maven will then generate a new project
in a directory with the same name as the artifactId you provided.

The entire interaction with Maven should look something like this:

> mvn archetype:generate -DarchetypeGroupId=org.openimaj -DarchetypeArtifactId=openimaj-quickstart-
archetype -DarchetypeVersion=1.3.10

[INFO] Scanning for projects...
[INFO] 
[INFO] ------------------------------------------------------------------------
[INFO] Building Maven Stub Project (No POM) 1
[INFO] ------------------------------------------------------------------------
[INFO] 
[INFO] >>> maven-archetype-plugin:3.0.0:generate (default-cli) > generate-sources @ standalone-pom >>>
[INFO] 
[INFO] <<< maven-archetype-plugin:3.0.0:generate (default-cli) < generate-sources @ standalone-pom <<<
[INFO] 
[INFO] 
[INFO] --- maven-archetype-plugin:3.0.0:generate (default-cli) @ standalone-pom ---
[INFO] Generating project in Interactive mode
[INFO] Archetype repository not defined. Using the one from [org.openimaj:openimaj-quickstart-
archetype:1.3.10] found in catalog remote
Define value for property 'groupId': uk.ac.soton.ecs.jsh2
Define value for property 'artifactId': openimaj-test-project
Define value for property 'version' 1.0-SNAPSHOT: :
Define value for property 'package' uk.ac.soton.ecs.jsh2: :
[INFO] Using property: openimajVersion = 1.3.10
Confirm properties configuration:
groupId: uk.ac.soton.ecs.jsh2

http://maven.apache.org
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artifactId: openimaj-test-project
version: 1.0-SNAPSHOT
package: uk.ac.soton.ecs.jsh2
openimajVersion: 1.3.10
 Y: :
[INFO] ----------------------------------------------------------------------------
[INFO] Using following parameters for creating project from Archetype: openimaj-quickstart-archetype:1.3.10
[INFO] ----------------------------------------------------------------------------
[INFO] Parameter: groupId, Value: uk.ac.soton.ecs.jsh2
[INFO] Parameter: artifactId, Value: openimaj-test-project
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: package, Value: uk.ac.soton.ecs.jsh2
[INFO] Parameter: packageInPathFormat, Value: uk/ac/soton/ecs/jsh2
[INFO] Parameter: package, Value: uk.ac.soton.ecs.jsh2
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: groupId, Value: uk.ac.soton.ecs.jsh2
[INFO] Parameter: openimajVersion, Value: 1.3.10
[INFO] Parameter: artifactId, Value: openimaj-test-project
[INFO] Project created from Archetype in dir: /Users/jsh2/openimaj-test-project
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 47.710 s
[INFO] Finished at: 2017-09-05T09:44:15+01:00
[INFO] Final Memory: 15M/221M
[INFO] ------------------------------------------------------------------------
> 
    

Overriding the OpenIMAJ version

Versions of the archetype after 1.0.5 automatically select the corresponding OpenIMAJ version. With all versions of
the archetype, you can override this by setting the openimajVersion on the command-line with the -D argument.

The project directory contains a file called pom.xml and a directory called src. The pom.xml file describes all of the dependencies
of the project and also contains instructions for packaging the project into a fat jar that contains all your project code and resources
together with the dependencies. If you find that you need to add another library to your project, you should do so by editing the
pom.xml file and adding a new dependency. The src directory contains the code for your project. In particular, src/main/java
contains your java application code and src/test/java contains unit tests.

The default project created by the archetype contains a small “hello world” application. To compile and assemble the “hello world”
application you cd into the project directory from the command line (replacing OpenIMAJ-Tutorial01 with the name of your
project):

cd OpenIMAJ-Tutorial01

and run the command:

mvn assembly:assembly

This will create a new directory called target that contains the assembled application jar (the assembled jar is the one whose name
ends with -jar-with-dependencies.jar). To run the application, enter:

java -jar target/OpenIMAJ-Tutorial01-1.0-SNAPSHOT-jar-with-dependencies.jar

The application will then run, and a window should open displaying a picture with the text “hello world”. Closing the window,
or ctrl-c on the command line, will quit the application.
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1.1. Integration with your favourite IDE

We could now go ahead and start playing with the code in a text editor, however this really isn’t recommended! Using a good
Integrated Development Environment (IDE) with auto-completion will make your experience much better -- particularly when
it comes to managing imports.

Maven integrates with all the popular IDEs. The OpenIMAJ developers all use Eclipse1 so that is what we’re most familiar with,
however we should be able to help getting it set up in a different IDE if you wish.

Integration with modern versions of Eclipse is quite simple, but you must have the Eclipse m2e plugin installed. If you're using
one of the standard "Eclipse for Java Developers" provided by the Eclipse project, then you should be all set. Otherwise you'll first
need to install the m2e plugin by following the instructions on the m2e website (http://www.eclipse.org/m2e/).

To import your Maven project from within Eclipse, select Import... from the File menu:

1 http://www.eclipse.org

http://www.eclipse.org
http://www.eclipse.org
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Choose Existing Maven Projects (inside the Maven folder):

In the dialog that appears, click the Browse... and navigate to your project directory, and click Open:
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The project should now appear in the Import Maven Projects window:

Finally click Finish. The project will then appear in the workspace and you’ll be able to look at the App.java file that was generated
by the archetype.

Once you’ve opened the App.java file in Eclipse, you can right-click on it and select Run as > Java Application to run it from
within Eclipse.

1.2. Exercises

1.2.1. Exercise 1: Playing with the sample application

Take a look at the App.java from within your IDE. Can you modify the code to render something other than “hello world” in
a different font and colour?
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Part II. Image Fundamentals
OpenIMAJ started life as a set of classes for analysing image content. The chapters in Part II present a number of practical examples
and exercises that will get you up an running manipulating images and performing real-world image analysis tasks.
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Chapter 2. Processing your first image
In this section we’ll start with the “hello world” app and show you how you can load an image, perform some basic processing on
the image, draw some stuff on your image and then display your results.

Loading images into Java is usually a horrible experience. Using Java ImageIO, one can use the read() method to create a
BufferedImage object. Unfortunately the BufferedImage object hides the fact that it is (and in fact all digital raster images
are) simply arrays of pixel values. A defining philosophy of OpenIMAJ is to keep things simple which in turn means in OpenIMAJ
images are as close as one can get to being just arrays of pixel values.

To read and write images in OpenIMAJ we use the ImageUtilities class. In the App.java class file remove the sample code
within the main method and add the following line:

MBFImage image = ImageUtilities.readMBF(new File("file.jpg"));

Note

Throughout the OpenIMAJ tutorial you will be using a number of different classes. For brevity and to ensure focus on
the important parts of the code we haven't explicitly listed the imports you'll need to make at the top of you class files.
Most modern IDEs will suggest the import to use once you've entered the name of a class. If there are multiple potential
class name matches, you almost certainly want the one from an org.openimaj sub-package.

Tip

The code for the tutorials (minus the exercise solutions) can be found as part of the OpenIMAJ source: https://github.com/
openimaj/openimaj/tree/master/documentation/tutorial/tutorial-code/src/main/java/org/openimaj/docs/tutorial

For this tutorial, read the image from the following URL:

MBFImage image = ImageUtilities.readMBF(new URL("http://static.openimaj.org/media/tutorial/sinaface.jpg"));

The ImageUtilities class provides the ability to read MBFImages and FImages. An FImage is a greyscale image which
represents each pixel as a value between 0 and 1. An MBFImage is a multi-band version of the FImage; under the hood it actually
contains a number FImage objects held in a list each representing a band of the image. What these bands represent is given by
the image’s public colourSpace field, which we can print as follows:

System.out.println(image.colourSpace);

If we run the code, we’ll see that the image is an RGB image with three FImages representing the red, blue and green components
of the image in that order.

You can display any OpenIMAJ image object using the DisplayUtilities class. In this example we display the image we have
loaded then we display the red channel of the image alone:

DisplayUtilities.display(image);
DisplayUtilities.display(image.getBand(0), "Red Channel");
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In an image-processing library, images are no good unless you can do something to them. The most basic thing you can do to an
image is fiddle with its pixels. In OpenIMAJ, as an image is just an array of floats, we make this is quite easy. Let’s go through
our colour image and set all its blue and green pixels to black:

MBFImage clone = image.clone();
for (int y=0; y<image.getHeight(); y++) {
    for(int x=0; x<image.getWidth(); x++) {
        clone.getBand(1).pixels[y][x] = 0;
        clone.getBand(2).pixels[y][x] = 0;
    }
}
DisplayUtilities.display(clone);

Note that the first thing we do here is to clone the image to preserve the original image for the remainder of the tutorial. The
pixels in an FImage are held in a 2D float array. The rows of the image are held in the first array that, in turn, holds each of the
column values for that row: [y][x]. By displaying this image we should see an image where two channels are black and one
channel is not. This results in an image that looks rather red.

Though it is helpful to sometimes get access to individual image pixels, OpenIMAJ provides a lot of methods to make things easier.
For example, we could have done the above like this instead:

clone.getBand(1).fill(0f);
clone.getBand(2).fill(0f);

More complex image operations are wrapped up by OpenIMAJ processor interfaces: ImageProcessors, KernelProcessors,
PixelProcessors and GridProcessors. The distinction between these is how their algorithm works internally. The overarching
similarity is that an image goes in and a processed image (or data) comes out. For example, a basic operation in image processing
is edge detection. A popular edge detection algorithm is the Canny edge detector. We can call the Canny edge detector like so:

image.processInplace(new CannyEdgeDetector());

When applied to a colour image, each pixel of each band is replaced with the edge response at that point (for simplicity you can
think of this as the difference between that pixel and its neighbouring pixels). If a particular edge is only strong in one band or
another then that colour will be strong, resulting in the psychedelic colours you should see if you display the image:

DisplayUtilities.display(image);
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Finally, we can also draw on our image in OpenIMAJ. On every Image object there is a set of drawing functions that can be called
to draw points, lines, shapes and text on images. Let’s draw some speech bubbles on our image:

image.drawShapeFilled(new Ellipse(700f, 450f, 20f, 10f, 0f), RGBColour.WHITE);
image.drawShapeFilled(new Ellipse(650f, 425f, 25f, 12f, 0f), RGBColour.WHITE);
image.drawShapeFilled(new Ellipse(600f, 380f, 30f, 15f, 0f), RGBColour.WHITE);
image.drawShapeFilled(new Ellipse(500f, 300f, 100f, 70f, 0f), RGBColour.WHITE);
image.drawText("OpenIMAJ is", 425, 300, HersheyFont.ASTROLOGY, 20, RGBColour.BLACK);
image.drawText("Awesome", 425, 330, HersheyFont.ASTROLOGY, 20, RGBColour.BLACK);
DisplayUtilities.display(image);

Here we construct a series of ellipses (defined by their centre [x, y], axes [major, minor] and rotation) and draw them as white
filled shapes. Finally, we draw some text on the image and display it.

2.1. Exercises

2.1.1. Exercise 1: DisplayUtilities

Opening lots of windows can waste time and space (for example if you wanted to view images on every iteration of a process
within a loop). In OpenIMAJ we provide a facility to open a named display so that was can reuse the display referring to it by
name. Try to do this with all the images we display in this tutorial. Only 1 window should open for the whole tutorial.

2.1.2. Exercise 2: Drawing

Those speech bubbles look rather plain; why not give them a nice border?
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Chapter 3. Introduction to clustering, segmentation and
connected components
In this tutorial we’ll create an application that demonstrates how an image can be broken into a number of regions. The process of
separating an image into regions, or segments, is called segmentation. Segmentation is a widely studied area in computer vision.
Researchers often try to optimise their segmentation algorithms to try and separate the objects in the image from the background.

To get started, create a new OpenIMAJ project using the Maven archetype, import it into your IDE, and delete the sample code
from within the generated main() method of the App class. In the main() method, start by adding code to load an image (choose
your own image):

MBFImage input = ImageUtilities.readMBF(new URL("http://..."));

To segment our image we are going to use a machine learning technique called clustering. Clustering algorithms automatically
group similar things together. In our case, we’ll use a popular clustering algorithm called K-Means clustering to group together
all the similar colours in our image. Each group of similar colours is known as a class. The K-means clustering algorithm requires
you set the number of classes you wish to find a priori (i.e. beforehand).

K-means Clustering
K-Means initialises cluster centroids with randomly selected data points and then iteratively assigns the data points to
their closest cluster and updates the centroids to the mean of the respective data points.

Colours in our input image are represented in RGB colour space; that is each pixel is represented as three numbers corresponding
to a red, green and blue value. In order to measure the similarity of a pair of colours the “distance” between the colours in the colour
space can be measured. Typically, the distance measured is the Euclidean distance. Unfortunately, distances in RGB colour space
do not reflect what humans perceive as similar/dissimilar colours. In order to work-around this problem it is common to transform
an image into an alternative colour space. The Lab colour space (pronounced as separate letters, L A B) is specifically designed
so that the Euclidean distance between colours closely matches the perceived similarity of a colour pair by a human observer.

Euclidean Distance
The Euclidean distance is the straight-line distance between two points. It is named after the "Father of Geometry", the
Greek mathematician Euclid.

To start our implementation, we’ll first apply a colour-space transform to the image:

input = ColourSpace.convert(input, ColourSpace.CIE_Lab);

We can then construct the K-Means algorithm:

FloatKMeans cluster = FloatKMeans.createExact(2);

The parameter (2) is the number of clusters or classes we wish the algorithm to generate. We can optionally provide a second
integer argument that controls the maximum number of iterations of the algorithm (the default is 30 iterations if we don't specify
otherwise).

Tip

There are a number of different static factory methods on the FloatKMeans class, as well as
constructors that allow various flavours of the K-Means algorithm to be instantiated. In particular, the
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FloatKMeans.createKDTreeEnsemble(int) method creates an approximate K-means implementation using a
technique based on an ensemble of KD-Trees. The approximate algorithm is much faster than the exact algorithm when
there is very high-dimensional data; in this case, with only three dimensions, the approximate algorithm is not required.

All the OpenIMAJ K-Means implementations are multithreaded and automatically takes advantage of all the processing
power they can obtain by default. This behaviour can of course be controlled programatically however.

The FloatKMeans algorithm takes its input as an array of floating point vectors (float[][]). We can flatten the pixels of an
image into the required form using the getPixelVectorNative() method:

float[][] imageData = input.getPixelVectorNative(new float[input.getWidth() * input.getHeight()][3]);

The K-Means algorithm can then be run to group all the pixels into the requested number of classes:

FloatCentroidsResult result = cluster.cluster(imageData);

Each class or cluster produced by the K-Means algorithm has an index, starting from 0. Each class is represented by its centroid
(the average location of all the points belonging to the class). We can print the coordinates of each centroid:

float[][] centroids = result.centroids;
for (float[] fs : centroids) {
    System.out.println(Arrays.toString(fs));
}

Now is a good time to test the code. Running it should print the (L, a, b) coordinates of each of the classes.

We can now use a HardAssigner to assign each pixel in our image to its respective class using the centroids learned during
the FloatKMeans. This is a process known as classification. There are a number of different HardAssigners, however,
FloatCentroidsResult has a method called defaultHardAssigner() which will return an assigner fit for our purposes.
HardAssigners have a method called assign() which takes a vector (the L, a, b value of a single pixel) and returns the index
of the class that it belongs to. We’ll start by creating an image that visualises the pixels and their respective classes by replacing
each pixel in the input image with the centroid of its respective class:

HardAssigner<float[],?,?> assigner = result.defaultHardAssigner();
for (int y=0; y<input.getHeight(); y++) {
    for (int x=0; x<input.getWidth(); x++) {
        float[] pixel = input.getPixelNative(x, y);
        int centroid = assigner.assign(pixel);
        input.setPixelNative(x, y, centroids[centroid]);
    }
}

We can then display the resultant image. Note that we need to convert the image back to RGB colour space for it to display properly:

input = ColourSpace.convert(input, ColourSpace.RGB);
DisplayUtilities.display(input);

Running the code will display an image that looks a little like the original image but with as many colours as there are classes.



Introduction to clustering, segmentation and connected components

The OpenIMAJ Tutorial (1.3.10) 17

To actually produce a segmentation of the image we need to group together all pixels with the same class that are touching
each other. Each set of pixels representing a segment is often referred to as a connected component. Connected components in
OpenIMAJ are modelled by the ConnectedComponent class.

The GreyscaleConnectedComponentLabeler class can be used to find the connected components:

GreyscaleConnectedComponentLabeler labeler = new GreyscaleConnectedComponentLabeler();
List<ConnectedComponent> components = labeler.findComponents(input.flatten());

Note that the GreyscaleConnectedComponentLabeler only processes greyscale images (the FImage class) and not the colour
image (MBFImage class) that we created. The flatten() method on MBFImage merges the colours into grey values by averaging
their RGB values.

Tip
OpenIMAJ also contains a class called ConnectedComponentLabeler which can only be used on binary (pure black
and white) FImages.

The ConnectedComponent class has many useful methods for extracting information about the shape of the region. Lets draw an
image with the components numbered on it. We’ll use the centre of mass of each region to position the number and only render
numbers for regions that are over a certain size (50 pixels in this case):

int i = 0;
for (ConnectedComponent comp : components) {
    if (comp.calculateArea() < 50) 
        continue;
    input.drawText("Point:" + (i++), comp.calculateCentroidPixel(), HersheyFont.TIMES_MEDIUM, 20);
}

Finally, we can display the image with the labels:

DisplayUtilities.display(input);

3.1. Exercises

3.1.1. Exercise 1: The PixelProcessor

Rather than looping over the image pixels using two for loops, it is possible to use a PixelProcessor to accomplish the same task:

image.processInplace(new PixelProcessor<Float[]>() {
    Float[] processPixel(Float[] pixel) {
        ...
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    }
});

Can you re-implement the loop that replaces each pixel with its class centroid using a PixelProcessor?

What are the advantages and disadvantages of using a PixelProcessor?

3.1.2. Exercise 2: A real segmentation algorithm

The segmentation algorithm we just implemented can work reasonably well, but is rather naïve. OpenIMAJ contains an
implementation of a popular segmentation algorithm called the FelzenszwalbHuttenlocherSegmenter.

Try using the FelzenszwalbHuttenlocherSegmenter for yourself and see how it compares to the basic segmentation algorithm
we implemented. You can use the SegmentationUtilities.renderSegments() static method to draw the connected
components produced by the segmenter.
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Chapter 4. Global image features
The task in this tutorial is to understand how we can extract numerical representations from images and how these numerical
representations can be used to provide similarity measures between images, so that we can, for example, find the most similar
images from a set.

As you know, images are made up of pixels which are basically numbers that represent a colour. This is the most basic form of
numerical representation of an image. However, we can do calculations on the pixel values to get other numerical representations
that mean different things. In general, these numerical representations are known as feature vectors and they represent particular
features.

Let’s take a very common and easily understood type of feature. It’s called a colour histogram and it basically tells you the
proportion of different colours within an image (e.g. 90% red, 5% green, 3% orange, and 2% blue). As pixels are represented by
different amounts of red, green and blue we can take these values and accumulate them in our histogram (e.g. when we see a red
pixel we add 1 to our “red pixel count” in the histogram).

A histogram can accrue counts for any number of colours in any number of dimensions but the usual is to split the red, green and
blue values of a pixel into a smallish number of “bins” into which the colours are thrown. This gives us a three-dimensional cube,
where each small cubic bin is accruing counts for that colour.

OpenIMAJ contains a multidimensional MultidimensionalHistogram implementation that is constructed using the number of
bins required in each dimension. For example:

MultidimensionalHistogram histogram = new MultidimensionalHistogram( 4, 4, 4 );

This code creates a histogram that has 64 (4 × 4 × 4) bins. However, this data structure does not do anything on its own. The
HistogramModel class provides a means for creating a MultidimensionalHistogram from an image. The HistogramModel
class assumes the image has been normalised and returns a normalised histogram:

HistogramModel model = new HistogramModel( 4, 4, 4 );
model.estimateModel( image );
MultidimensionalHistogram histogram = model.histogram;

You can print out the histogram to see what sort of numbers you get for different images. Note that the you can re-use the
HistogramModel by applying it to different images. If you do reuse the HistogramModel the model.histogram will be the
same object, so you'll need to clone() it if you need to keep hold of its values for multiple images. Let’s load in 3 images then
generate and store the histograms for them:

URL[] imageURLs = new URL[] {
   new URL( "http://openimaj.org/tutorial/figs/hist1.jpg" ),
   new URL( "http://openimaj.org/tutorial/figs/hist2.jpg" ), 
   new URL( "http://openimaj.org/tutorial/figs/hist3.jpg" ) 
};

List<MultidimensionalHistogram> histograms = new ArrayList<MultidimensionalHistogram>();
HistogramModel model = new HistogramModel(4, 4, 4);

for( URL u : imageURLs ) {
    model.estimateModel(ImageUtilities.readMBF(u));
    histograms.add( model.histogram.clone() );
}
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We now have a list of histograms from our images. The Histogram class extends a class called the MultidimensionalDoubleFV
which is a feature vector represented by multidimensional set of double precision numbers. This class provides us with a
compare() method which allows comparison between two multidimensional sets of doubles. This method takes the other feature
vector to compare against and a comparison method which is implemented in the DoubleFVComparison class.

So, we can compare two histograms using the Euclidean distance measure like so:

double distanceScore = histogram1.compare( histogram2, DoubleFVComparison.EUCLIDEAN );

This will give us a score of how similar (or dissimilar) the histograms are. It’s useful to think of the output score as a distance
apart in space. Two very similar histograms will be very close together so have a small distance score, whereas two dissimilar
histograms will be far apart and so have a large distance score.

The Euclidean distance measure is symmetric (that is, if you compare histogram1 to histogram2 you will get the same score if
you compare histogram2 to histogram1) so we can compare all the histograms with each other in a simple, efficient, nested loop:

for( int i = 0; i < histograms.size(); i++ ) {
    for( int j = i; j < histograms.size(); j++ ) {
        double distance = histograms.get(i).compare( histograms.get(j), DoubleFVComparison.EUCLIDEAN );
    }
}

4.1. Exercises

4.1.1. Exercise 1: Finding and displaying similar images

Which images are most similar? Does that match with what you expect if you look at the images? Can you make the application
display the two most similar images that are not the same?

4.1.2. Exercise 2: Exploring comparison measures

What happens when you use a different comparison measure (such as DoubleFVComparison.INTERSECTION)?
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Chapter 5. SIFT and feature matching
In this tutorial we’ll look at how to compare images to each other. Specifically, we’ll use a popular local feature descriptor called
SIFT to extract some interesting points from images and describe them in a standard way. Once we have these local features and
their descriptions, we can match local features to each other and therefore compare images to each other, or find a visual query
image within a target image, as we will do in this tutorial.

Firstly, lets load up a couple of images. Here we have a magazine and a scene containing the magazine:

MBFImage query = ImageUtilities.readMBF(new URL("http://static.openimaj.org/media/tutorial/query.jpg"));
MBFImage target = ImageUtilities.readMBF(new URL("http://static.openimaj.org/media/tutorial/target.jpg"));

 

The first step is feature extraction. We’ll use the difference-of-Gaussian feature detector which we describe with a SIFT
descriptor. The features we find are described in a way which makes them invariant to size changes, rotation and position. These
are quite powerful features and are used in a variety of tasks. The standard implementation of SIFT in OpenIMAJ can be found
in the DoGSIFTEngine class:

DoGSIFTEngine engine = new DoGSIFTEngine(); 
LocalFeatureList<Keypoint> queryKeypoints = engine.findFeatures(query.flatten());
LocalFeatureList<Keypoint> targetKeypoints = engine.findFeatures(target.flatten());

Once the engine is constructed, we can use it to extract Keypoint objects from our images. The Keypoint class contain a public
field called ivec which, in the case of a standard SIFT descriptor is a 128 dimensional description of a patch of pixels around a
detected point. Various distance measures can be used to compare Keypoints to Keypoints.

The challenge in comparing Keypoints is trying to figure out which Keypoints match between Keypoints from some query
image and those from some target. The most basic approach is to take a given Keypoint in the query and find the Keypoint
that is closest in the target. A minor improvement on top of this is to disregard those points which match well with MANY other
points in the target. Such point are considered non-descriptive. Matching can be achieved in OpenIMAJ using the BasicMatcher.
Next we’ll construct and setup such a matcher:

LocalFeatureMatcher<Keypoint> matcher = new BasicMatcher<Keypoint>(80);
matcher.setModelFeatures(queryKeypoints);
matcher.findMatches(targetKeypoints);

We can now draw the matches between these two images found with this basic matcher using the MatchingUtilities class:

MBFImage basicMatches = MatchingUtilities.drawMatches(query, target, matcher.getMatches(), RGBColour.RED);
DisplayUtilities.display(basicMatches);
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As you can see, the basic matcher finds many matches, many of which are clearly incorrect. A more advanced approach
is to filter the matches based on a given geometric model. One way of achieving this in OpenIMAJ is to use a
ConsistentLocalFeatureMatcher which given an internal matcher and a model fitter configured to fit a geometric model,
finds which matches given by the internal matcher are consistent with respect to the model and are therefore likely to be correct.

To demonstrate this, we’ll use an algorithm called Random Sample Consensus (RANSAC) to fit a geometric model called an Affine
transform to the initial set of matches. This is achieved by iteratively selecting a random set of matches, learning a model from
this random set and then testing the remaining matches against the learnt model.

Tip
An Affine transform models the transformation between two parallelograms.

We’ll now set up a RANSAC model fitter configured to find Affine Transforms (using the RobustAffineTransformEstimator
helper class) and our consistent matcher:

RobustAffineTransformEstimator modelFitter = new RobustAffineTransformEstimator(50.0, 1500,
  new RANSAC.PercentageInliersStoppingCondition(0.5));
matcher = new ConsistentLocalFeatureMatcher2d<Keypoint>(
  new FastBasicKeypointMatcher<Keypoint>(8), modelFitter);

matcher.setModelFeatures(queryKeypoints);
matcher.findMatches(targetKeypoints);

MBFImage consistentMatches = MatchingUtilities.drawMatches(query, target, matcher.getMatches(), 
  RGBColour.RED);

DisplayUtilities.display(consistentMatches);
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The AffineTransformModel class models a two-dimensional Affine transform in OpenIMAJ. The
RobustAffineTransformEstimator class provides a method getModel() which returns the internal Affine Transform model
whose parameters are optimised during the fitting process driven by the ConsistentLocalFeatureMatcher2d. An interesting
byproduct of using the ConsistentLocalFeatureMatcher2d is that the AffineTransformModel returned by getModel()
contains the best transform matrix to go from the query to the target. We can take advantage of this by transforming the bounding
box of our query with the transform estimated in the AffineTransformModel, therefore we can draw a polygon around the
estimated location of the query within the target:

target.drawShape(
  query.getBounds().transform(modelFitter.getModel().getTransform().inverse()), 3,RGBColour.BLUE);
DisplayUtilities.display(target); 

5.1. Exercises

5.1.1. Exercise 1: Different matchers

Experiment with different matchers; try the BasicTwoWayMatcher for example.

5.1.2. Exercise 2: Different models

Experiment with different models (such as a HomographyModel) in the consistent matcher. The RobustHomographyEstimator
helper class can be used to construct an object that fits the HomographyModel model. You can also experiment with an alternative
robust fitting algorithm to RANSAC called Least Median of Squares (LMedS) through the RobustHomographyEstimator.

Tip
A HomographyModel models a planar Homography between two planes. Planar Homographies are more general than
Affine transforms and map quadrilaterals to quadrilaterals.





The OpenIMAJ Tutorial (1.3.10)

Chapter 6. Image Datasets
Datasets are an important concept in OpenIMAJ. Fundamentally, a dataset is a collection of data items. OpenIMAJ supports two
types of dataset: ListDatasets and GroupedDatasets. As the name suggests, a ListDataset is basically like a list of data items
and indeed the ListDataset class extends the java List interface. A GroupedDataset is essentially a keyed map of Datasets
and is an extension of the Java Map interface. The datasets classes are designed to provide a useful way of manipulating collections
of items, and are particularly useful for applying machine-learning techniques to data as we'll see later in the tutorial.

This tutorial explores the use of datasets that contain images. OpenIMAJ contains methods and classes to help you efficiently deal
with the construction and manipulation of image datasets (and indeed datasets of other types). To get started, create a new project
using the Maven archetype, or add a new class to an existing OpenIMAJ Maven project and add a main method.

We'll start by looking at how you can create a simple list dataset from a directory of images you have on your computer's disk. If
you don't have a directory of images to hand, create an empty one somewhere on your computer and add a couple of images to it.
Now, add some code to your main method to construct an instance of a VFSListDataset as follows:

VFSListDataset<FImage> images = 
  new VFSListDataset<FImage>("/path/to/image_dir", ImageUtilities.FIMAGE_READER);

In your code you'll need to replace the /path/to/image_dir string with the path to your directory of images. Notice
that the dataset we've created is typed on the FImage class, and in the constructor we've passed a reference to
ImageUtilities.FIMAGE_READER. This means that this dataset will contain grey-scale versions of the images on the disk
(irrespective of whether they are actually colour images). The ImageUtilities.FIMAGE_READER is a special object called an
ObjectReader. If you wanted to load colour images in your dataset, you would just need to change the type to MBFImage, and
use the ImageUtilities.MBFIMAGE_READER ObjectReader instead.

As we mentioned earlier, a ListDataset extends a normal Java List, so you can do standard things like getting the number
of items in the dataset:

System.out.println(images.size());

The dataset interface also allows you to easily get a random item from the dataset. As we're dealing with images, we can display
a random image as follows:

DisplayUtilities.display(images.getRandomInstance(), "A random image from the dataset");

Also, because we're dealing with a list of images, we can display them all in a window as follows:

DisplayUtilities.display("My images", images);

The VFSListDataset class is very powerful. It can be used to create datasets from any kinds of data given an appropriate
ObjectReader implementation. Beyond this, it is also able to create datasets from other sources, such as compressed archives
containing data items, and even from remote data that is not stored on the local disk. Try running the following code which creates
an image dataset from images in a zip file which is hosted on a web-server:

VFSListDataset<FImage> faces = 
  new VFSListDataset<FImage>("zip:http://datasets.openimaj.org/att_faces.zip", \
ImageUtilities.FIMAGE_READER);
DisplayUtilities.display("ATT faces", faces);

As was mentioned in the introduction to this chapter, a grouped dataset maps a set of keys to sub-datasets. Grouped datasets are
useful for things like machine-learning when you want to train classifiers to distinguish between groups. If you download and unzip
the faces dataset that we used above (http://datasets.openimaj.org/att_faces.zip), you'll see that the images are actually grouped
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into directories, with all the images of a single individual stored in the same directory. When we loaded the list dataset from the
zip file, we lost the associations between images of each individual. Using a VFSGroupDataset we can maintain the associations:

VFSGroupDataset<FImage> groupedFaces = 
 new VFSGroupDataset<FImage>( "zip:http://datasets.openimaj.org/att_faces.zip", \
ImageUtilities.FIMAGE_READER);

Using the grouped dataset, we can iterate through the keys, which are actually created from the names of the directories containing
the images, and display all the images from each individual in a window:

for (final Entry<String, VFSListDataset<FImage>> entry : groupedFaces.entrySet()) {
 DisplayUtilities.display(entry.getKey(), entry.getValue());
}

Sometimes, it can be useful to be able to dynamically create a dataset of images from the web. In the image analysis community,
Flickr is often used as a source of tagged images for performing activities such as training classifiers. The FlickrImageDataset
class makes it easy to dynamically construct a dataset of images from a Flickr search:

FlickrAPIToken flickrToken = DefaultTokenFactory.get(FlickrAPIToken.class);
FlickrImageDataset<FImage> cats = 
  FlickrImageDataset.create(ImageUtilities.FIMAGE_READER, flickrToken, "cat", 10);
DisplayUtilities.display("Cats", cats);

The Flickr website requires you authenticate to use its API. The first time you run the above code, you will see instructions on
obtaining a Flickr API key and secret, which you then have to enter at the prompt. Once you've done this once, the key and
secret will be stored and automatically retrieved in the future by the DefaultTokenFactory. It is also possible to for-go the
DefaultTokenFactory and construct a FlickrAPIToken and fill in the api key and secret field manually.

6.1. Exercises

6.1.1. Exercise 1: Exploring Grouped Datasets

Using the faces dataset available from http://datasets.openimaj.org/att_faces.zip, can you display an image that
shows a randomly selected photo of each person in the dataset?

6.1.2. Exercise 2: Find out more about VFS datasets

VFSListDatasets and VFSGroupDatasets are based on a technology from the Apache Software Foundation called Commons
Virtual File System (Commons VFS). Explore the documentation of the Commons VFS to see what other kinds of sources are
supported for building datasets.

6.1.3. Exercise 3: Try the BingImageDataset dataset

The BingImageDataset class allows you to create a dataset of images by performing a search using the Bing search engine. The
BingImageDataset class works in a similar way to the FlickrImageDataset described above. Try it out!

6.1.4. Exercise 4: Using MapBackedDataset

The MapBackedDataset class provides a concrete implementation of a GroupedDataset. See if you can use the static
MapBackedDataset.of method to construct a grouped dataset of images of some famous people. Use a BingImageDataset
to get the images of each person.
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Part III. Video Fundamentals
Video analysis is a natural extension to image analysis. OpenIMAJ contains a number of classes and methods to help you work
with video, covering everything from the application of image processing to individual frames to feature tracking across entire
video sequences. Part III of the tutorial will provide you with the knowledge need to construct video objects from files and capture
hardware, and demonstrate the basic foundations of applying processing and analysis algorithms to videos.
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Chapter 7. Processing video
In this section we’ll show you how to deal with videos using OpenIMAJ. We provide a set of tools for loading, displaying and
processing various kinds of video.

All videos in OpenIMAJ are subtypes of the Video class. This class is typed on the type of underlying frame. In this case, let’s
create a video which holds coloured frames:

Video<MBFImage> video;

Exactly what kind of video is loaded depends on what you want to do. To load a video from a file we use the Xuggle library
which internally uses ffmpeg. Let’s load a video from a file (which you can download from here: http://static.openimaj.org/media/
tutorial/keyboardcat.flv).

If we want to load a video from a file we use a XuggleVideo object:

video = new XuggleVideo(new File("/path/to/keyboardcat.flv"));

Tip
The XuggleVideo class also has constructors that let you pass a URL to a video on the web without downloading it first:
video = new XuggleVideo(new URL("http://static.openimaj.org/media/tutorial/keyboardcat.flv"));

If your computer has a camera, OpenIMAJ also supports live video input. These are called capture devices and you can use one
through the VideoCapture class:

video = new VideoCapture(320, 240);

This will find the first video capture device attached to your system and render it as closely to 320 × 240 pixels as it can. To select
a specific device you can use the alternative constructors and use the VideoCapture.getVideoDevices() static method to
obtain the available devices.

To see if either of these kinds of video work, we can use VideoDisplay to display videos. This is achieved using the static function
calls in VideoDisplay (which mirror those found in DisplayUtilities for images) like so:

VideoDisplay<MBFImage> display = VideoDisplay.createVideoDisplay(video);

Simply by creating a display, the video starts and plays. You can test this by running your app.

As with images, displaying them is nice but what we really want to do is process the frames of the video in some way. This can
be achieved in various ways; firstly videos are Iterable, so you can do something like this to iterate through every frame and
process it:

for (MBFImage mbfImage : video) {
    DisplayUtilities.displayName(mbfImage.process(new CannyEdgeDetector()), "videoFrames");

http://static.openimaj.org/media/tutorial/keyboardcat.flv
http://static.openimaj.org/media/tutorial/keyboardcat.flv
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}

Here we’re applying a Canny edge detector to each frame and displaying the frame in a named window. Another approach, which
ties processing to image display automatically, is to use an event driven technique:

VideoDisplay<MBFImage> display = VideoDisplay.createVideoDisplay(video);
display.addVideoListener(
  new VideoDisplayListener<MBFImage>() {
    public void beforeUpdate(MBFImage frame) {
        frame.processInplace(new CannyEdgeDetector());
    }

    public void afterUpdate(VideoDisplay<MBFImage> display) {
    }
  });

These VideoDisplayListeners are given video frames before they are rendered and they are handed the video display after the
render has occurred. The benefit of this approach is that functionality such as looping, pausing and stopping the video is given
to you for free by the VideoDisplay class.

7.1. Exercises

7.1.1. Exercise 1: Applying different types of image processing to the video

Try a different processing operation and see how it affects the frames of your video.
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Chapter 8. Finding faces
OpenIMAJ contains a set of classes that contain implementations of some of the state-of-the-art face detection and recognition
algorithms. These classes are provided as a sub-project of the OpenIMAJ code-base called faces. The OpenIMAJ maven archetype
adds the face library as a dependency and so we can start building face detection applications straight away.

Create a new application using the quick-start archetype (see tutorial 1) and import it into your IDE. If you look at the pom.xml
file you will see that the faces dependency from OpenIMAJ is already included. As you’ve already done the video-processing
tutorial, we’ll try to find faces within the video that your cam produces. If you don’t have a cam, follow the video tutorial on how
to use video from a file instead.

Start by removing the code from the main method of the App.java class file. Then create a video capture object and a display to
show the video. Create a listener on the video display to which we can hook our face finder. The code is below, but check out the
previous tutorial on video processing if you’re not sure what it means.

VideoCapture vc = new VideoCapture( 320, 240 );
VideoDisplay<MBFImage> vd = VideoDisplay.createVideoDisplay( vc );
vd.addVideoListener( 
  new VideoDisplayListener<MBFImage>() {
    public void beforeUpdate( MBFImage frame ) {
    }

    public void afterUpdate( VideoDisplay<MBFImage> display ) {
    }
  });

For finding faces in images (or in this case video frames) we use a face detector. The FaceDetector interface provides the
API for face detectors and there are currently two implementations within OpenIMAJ - the HaarCascadeDetector and the
SandeepFaceDetector. The HaarCascadeDetector is considerably more robust than the SandeepFaceDetector, so we’ll
use that.

In the beforeUpdate() method, instantiate a new HaarCascadeDetector. The constructor takes the minimum size in pixels
that a face can be detected at. For now, set this to 40 pixels:

FaceDetector<DetectedFace,FImage> fd = new HaarCascadeDetector(40);

Like all FaceDetector implementations, the HaarCascadeDetector has a method detectFaces() which takes an image.
Because the HaarCascadeDetector uses single band images, we must convert our multi-band colour image into a single
band image. To do this we can use the Transforms utility class that contains some static methods for converting images. The
calculateIntensity() method will do just fine. Note that functionally the calculateIntensity() method does the same
thing as the flatten() method we used earlier when used on RGB images.

List<DetectedFace> faces = fd.detectFaces(Transforms.calculateIntensity(frame));

The detectFaces() method returns a list of DetectedFace objects which contain information about the faces in the image.
From these objects we can get the rectangular bounding boxes of each face and draw them back into our video frame. As we’re
doing all this in our beforeUpdate() method, the video display will end up showing the bounding boxes on the displayed video.
If you run the code and you have a cam attached, you should see yourself with a box drawn around your face. The complete
code is shown below:

FaceDetector<DetectedFace,FImage> fd = new HaarCascadeDetector(40);
List<DetectedFace> faces = fd.detectFaces( Transforms.calculateIntensity(frame));
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for( DetectedFace face : faces ) {
    frame.drawShape(face.getBounds(), RGBColour.RED);
}

OpenIMAJ has other face detectors which go a bit further than just finding the face. The FKEFaceDetector finds facial
keypoints (the corners of the eyes, nose and mouth) and we can use this detector instead simply by instantiating that object
instead of the HaarCascadeDetector. The FKEFaceDetector returns a slightly different object for each detected face, called a
KEDetectedFace. The KEDetectedFace object contains the extra information about where the keypoints in the face are located.
The lines of our code to instantiate the detector and detect faces can now be changed to the following:

FaceDetector<KEDetectedFace,FImage> fd = new FKEFaceDetector();
List<KEDetectedFace> faces = fd.detectFaces( Transforms.calculateIntensity( frame ) );

If you run the demo now, you will see exactly the same as before, as the FKEFaceDetector still detects bounding boxes. It may
be running a bit slower though, as there is much more processing going on - we’re just not seeing the output of it! So, let’s plot
the facial keypoints.

To get the keypoints use getKeypoints() on the detected face. Each keypoint has a position (public field) which is relative to
the face, so we’ll need to translate the point to the position of the face within the video frame before we plot the points. To do that
we can use the translate() method of the Point2d class and the minX() and minY() methods of the Rectangle class.

8.1. Exercises

8.1.1. Exercise 1: Drawing facial keypoints

Use the information above to plot the facial keypoints on the video.

8.1.2. Exercise 2: Speech bubbles

Try and take the speech bubble from the previous image tutorial and make it come from the mouth in the video. Hints: use
getKeypoint(FacialKeypointType) to get the keypoint of the left corner of the mouth and plot the ellipses depending on
that point. You may need to use smaller ellipses and text if your video is running at 320x240.
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Part IV. Audio Fundamentals
OpenIMAJ started as a library for image processing, then expanded to video processing. The natural extension to dealing with
videos is audio processing and has an important role in many applications of multimedia understanding. In this chapter we'll go
through the basic audio subsystem in OpenIMAJ and show how to extract features from audio that can then be used in the various
other tools in OpenIMAJ.
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Chapter 9. Getting Audio and Basic Processing
Let's dive straight in and get something going before we look at some audio theory and more complex audio processing. One of
the most useful things to do with audio is to listen to it! Playing an audio file in OpenIMAJ is very easy: simply create your audio
source and pass it to the audio player.

XuggleAudio xa = new XuggleAudio( new File( "myAudioFile.mp3" ) );
AudioPlayer.createAudioPlayer( xa ).run();

If you run these 2 lines of code you should hear audio playing. The XuggleAudio class uses the Xuggler library to decode the
audio from the file. The audio player ()that's constructed using a static method as with the video player) returns an audio player
instance which we set running straight away.

Tip

The XuggleAudio class also has constructors for reading audio from a URL or a stream.

What's happening underneath is that the Xuggler library decodes the audio stream into chunks of audio (called frames) each of
which has many samples. A sample represents a level of sound pressure and the more of these there are within one second, the
better the representation of the original continuous signal. The number of samples in one second is called the sample rate and you
may already know that audio on CDs are encoded at 44,100 samples per second (or 44.1KHz). The maximum frequency that can
be encoded in a digital signal is half of the sample rate (e.g. an estimate of a 22.05KHz sine wave with a 44.1KHz sampled signal
will be {1,-1,1,-1...}). This is called the Nyquist frequency (named after Swedish-American engineer Harry Nyquist).

Let's have a look at the audio waveform. This is easy to do with OpenIMAJ as we have a subproject that contains various visualisers
for various data including audio data. The AudioWaveform visualisation acts as a very basic oscilloscope for displaying the audio
data. We'll use a file from http://audiocheck.net/ as it's good for understanding some of the audio functions we're about to
describe. We can link directly to the file by passing a URL to XuggleAudio (as in the code snippet below) or you can download
the 20Hz-20KHz sweep and use it by passing a File to the XuggleAudio.
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final AudioWaveform vis = new AudioWaveform( 400, 400 );
vis.showWindow( "Waveform" );

final XuggleAudio xa = new XuggleAudio( 
    new URL( "http://www.audiocheck.net/download.php?" +
        "filename=Audio/audiocheck.net_sweep20-20klin.wav" ) );

SampleChunk sc = null;
while( (sc = xa.nextSampleChunk()) != null )
    vis.setData( sc.getSampleBuffer() );

So, the first two lines above create the visualisation. We open the file and then we iterate through the audio stream (with
xa.nextSampleChunk()) and send that data to the visualisation (we'll cover the getSampleBuffer() method later).

The audio subsystem in OpenIMAJ has been designed to match the programming paradigm of the image and video subprojects.
So, all classes providing audio extend the Audio class. Currently all implementations also extend the AudioStream class which
defines a method for getting frames of audio from the stream which we call SampleChunks in OpenIMAJ. A SampleChunk is a
wrapper around an array of bytes. Understanding what those bytes mean requires knowledge of the format of the audio data and
this is given by the AudioFormat class.

Audio data, like image data, can come in many formats. Each digitised reading of the sound pressure (the sample) can be represented
by 8 bits (1 byte, signed or unsigned), 16 bits (2 bytes, little or big endian, signed or unsigned), or 24 bits or more. The sample rate
can be anything, although 22.05KHz or 44.1KHz is common for audio (48KHz for video). The audio data can also represent one
(mono), two (stereo) or more channels of audio, which are interleaved in the sample chunk data.

To make code agnostic to the audio format, OpenIMAJ has a API that provides a means for accessing the sample data in a
consistent way. This class is called a SampleBuffer. It has a get(index) method which returns a sample as a value between
0..1 whatever the underlying size of the data. It also provides a set(index,val) method which provides the opposite
conversion. Multichannel audio is still interleaved in the SampleBuffer, however, it does provide various accessors for getting
data from specific channels. An appropriate SampleBuffer for the audio data in a SampleChunk can be retrieved using
SampleChunk.getSampleBuffer().

Ok, enough theory for the moment. Let's do something interesting that will help us towards understanding what we're getting in.

An algorithm called the Fourier Transform converts a time-domain signal (i.e. the signal you're getting from the audio file) into a
frequency-domain signal (describing what pitches or frequencies contribute towards the final signal). We can see what frequencies
are in our signal by applying the transform and visualising the results.

Take the previous code and change the visualisation to be a BarVisualisation. Next, we'll create a FourierTransform object
and take our stream of data from there.

FourierTransform fft = new FourierTransform( xa );
...
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while( (sc = fft.nextSampleChunk()) != null )
{
    float[][] fftData = fft.getMagnitudes();
    vis.setData( fftData[0] );
}

Run this demo on the audiocheck.net sine wave sweep and you'll see a peak in the graph moving up through the frequencies.
The lowest frequencies are on the left of the visualisation and the highest frequencies on the right (the Nyquist frequency on
the far right).

Tip

Try using the AudioSpectrogram visualisation which displays the FFT in a slightly different way. It plots
the frequencies vertically, with the pixel intensities as the amplitude of the frequency. The spectrogram expects
values between 0 and 1 so you will need to get normalised magnitudes from the Fourier processor: using
fft.getNormalisedMagnitudes( 1f/Integer.MAX_VALUE ). You should see a nice line being drawn through
the frequencies.

This example also introduces us to the processor chaining in the OpenIMAJ audio system. Chaining allows us to create a set
of operations to apply to the audio data and to take the final data stream from the end. In this case we have chained the
FourierTransform processor to the original audio stream and we're taking the data from the end of the stream, as shown in
the diagram below.
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When we call nextSampleChunk() on the FourierTransform object, it goes and gets the sample chunk from the previous
processor in the chain, processes the sample chunk and returns a new sample chunk (in fact, the FourierTransform returns
the sample chunk unchanged).

Let's put an EQ filter in the chain that will filter out frequencies from the original signal:

EQFilter eq = new EQFilter( xa, EQType.LPF, 5000 );
FourierTransform fft = new FourierTransform( eq );

We have set the low-pass filter (only lets low frequencies through) to 5KHz (5000Hz), so when you run the program again, you will
see the peak fall off some way along its trip up to the high frequencies. This sort of filtering can be useful in some circumstances
for directing processing to specific parts of the audio spectrum.

Tip

As the frequency peak falls off, the bar visualisation will rescale to fit and it might not be too easy to see what's going
on. Try disabling the automatic scaling on the bar visualisation and set the maximum value to be fixed around 1E12:
vis.setAutoScale( false );
vis.setMaximumValue( 1E12 );

So, we've learned a bit about audio, seen the basics of the audio subsystem in OpenIMAJ and even started looking into the audio.
In the next chapter, we'll start extracting features and trying to do something interesting with it, bringing in other parts of the
OpenIMAJ system.

9.1. Exercises

9.1.1. Exercise 1: Spectrogram on Live Sound

Make the application display the audio spectrogram of the live sound input from your computer. You can use the
JavaSoundAudioGrabber class in a separate thread to grab audio from your computer. When you talk or sing into the computer
can you see the pitches in your voice? How does speech compare to other sounds?
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Chapter 10. Feature Extraction from Audio
Just like images, we can extract features that can be used to get a higher-level understanding of the audio. There are some features
that have become de-facto in audio processing, and one of these is the Mel-Frequency Cepstrum Coefficients (MFCCs). They
give an overview of the shape (or envelope) of the frequency components of the audio based on some perceptual scaling of the
frequency domain.

OpenIMAJ provides an MFCC class based around the jAudio implementation. Unsurprisingly, it's called MFCC! We can use it in
exactly the same way as the FFT processor, so if you take the code from FFT example in the previous chapter you can change the
FFT processor to be the MFCC processor.

  MFCC mfcc = new MFCC( xa );
  ...
  while( (sc = mfcc.nextSampleChunk()) != null )
  {
   double[][] mfccs = mfcc.getLastGeneratedFeature();
   vis.setData( mfccs[0] );
  }
 

MFCCs were specifically developed for speech recognition tasks and so are much more suitable for describing speech signals than
a sine wave sweep. So, let's switch to using the JavaSoundAudioGrabber so we can speak into the computer. Secondly, we'll
fix the analysis window that we're using. The literature shows that 30ms windows with 10ms overlaps are often used in speech
processing. At 44.1KHz, 10ms is 441 samples, so we'll use the FixedSizeSampleAudioProcessor to deal with giving us the
appropriate size sample chunks.

  JavaSoundAudioGrabber jsag = new JavaSoundAudioGrabber( new AudioFormat( 16, 44.1, 1 ) );
  FixedSizeSampleAudioProcessor fssap = new FixedSizeSampleAudioProcessor( jsag, 441*3, 441 );
 

You should see that when you speak into the computer, the MFCCs show a noticeable change compared to the sine wave sweep.

Tip

You might want to try fixing the axis of the visualisation bar graph using the method setAxisLocation( 100 ).

10.1. Exercises

10.1.1. Exercise 1: Spectral Flux

Update the program to use the SpectralFlux feature. Set the bar visualisation to use a maximum value of 0.0001. What do you think
this feature is showing? How would this feature be useful?
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Part V. Streaming Data Fundamentals
The analysis of streaming multimedia data is becoming a hot research topic. In OpenIMAJ we've built a framework that aims to
make it easy to work with streams of all kinds of data. This even includes some classes that connect to live data sources such as
Twitter. The framework even provides a number of strategies to seamlessly deal with streams of data that arrive at a rate faster
than they can be consumed. The tutorials in this section will get you up to speed using the OpenIMAJ stream classes and show
you how to use them to build some practical applications.
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Chapter 11. Twitter Streams and Images
This tutorial will show you how to extract and analyse images posted on Twitter in real-time. To get started, create a new project
using the OpenIMAJ archetype and in the main method, create a connection to the live Twitter sample stream as follows:

TwitterAPIToken token = DefaultTokenFactory.get(TwitterAPIToken.class);
TwitterStreamDataset stream = new TwitterStreamDataset(token);

At this point, run the code. The first time you run it you will be instructed to register as a Twitter developer to get an API key,
which you will then need to enter at the prompt. If you’ve followed the Image Datasets tutorial you should be familiar with this
process from using the FlickrImageDataset and BingImageDataset classes; as with those classes you could also construct
a TwitterAPIToken and set its fields manually. You’ll notice that not much happens other than a few debug messages. Also,
notice that the program doesn’t end; this is because there is a thread running in the background reading tweets into your stream
object. Manually stop the program running.

To demonstrate that Tweets are really being added into your stream object, add the following code to print the text content of
each Tweet and run it again:

stream.forEach(new Operation<Status>() {
    public void perform(Status status) {
        System.out.println(status.getText());
    }
});

You should now see a large volume of Tweet messages being written to your console. Stop the program and remove the above
forEach loop. We’ll now look at how we can get images out of the Tweets.

Tweets themselves do not contain images; rather tweets might contain URLs, which might correspond to images, or web-sites
where an image is hosted. URLs might be in the textual body of the Tweets and/or in special fields that form part of the status
objects. OpenIMAJ makes it easy to extract the URLs by mapping a stream of Twitter Status objects to URL objects:

Stream<URL> urlStream = stream.map(new TwitterURLExtractor());

The ImageSiteURLExtractor class can be used to process the URLs and return just those that correspond to images. The
ImageSiteURLExtractor is also aware of a number of standard image hosting sites, and is able to resolve the actual image URL
from the web-page URL that would normally appear in a Tweet. The ImageSiteURLExtractor is just another Function so
can be applied as another map:

Stream<URL> imageUrlStream = urlStream.map(new ImageSiteURLExtractor(false));

The boolean in the ImageSiteURLExtractor constructor disables support for the Tumblr hosting site; you can enable it, but
you’ll need to create a Tumblr API key (which you will be prompted for). Now to get the images, we can apply a static instance
of function class called ImageFromURL which has been configured to read MBFImages:

Stream<MBFImage> imageStream = imageUrlStream.map(ImageFromURL.MBFIMAGE_EXTRACTOR);

Now let’s display the images in the stream as they arrive:

imageStream.forEach(new Operation<MBFImage>() {
    public void perform(MBFImage image) {
        DisplayUtilities.displayName(image, "image");
    }
});

If at this point you run the program, you should see be able to see the images that are currently being shared on Twitter.



Twitter Streams and Images

46 The OpenIMAJ Tutorial (1.3.10)

Now let’s modify the code so we can generate a visualisation of the faces that appear on Twitter. Add an extra inline map function
before the previous forEach loop, so that the code looks like this:

imageStream.map(new MultiFunction<MBFImage, MBFImage>() {
    public List<MBFImage> apply(MBFImage in) {

    }
}).forEach(new Operation<MBFImage>() {
    public void perform(MBFImage image) {
        DisplayUtilities.displayName(image, "image");
    }
});

and add the following to the apply method:

List<DetectedFace> detected = detector.detectFaces(in.flatten());
 
List<MBFImage> faces = new ArrayList<MBFImage>();
for (DetectedFace face : detected)
    faces.add(in.extractROI(face.getBounds()));

return faces;

and finally add the following just before the apply method:

 HaarCascadeDetector detector = HaarCascadeDetector.BuiltInCascade.frontalface_default.load();
 

Now, if you run the software, you should be able to to see the faces of people who are being tweeted at the current time.

11.1. Exercises

11.1.1. Exercise 1: The TwitterSearchStream

The TwitterSearchStream class repeatedly calls the Twitter search API with a specific query in order to produce a stream of
Tweets related to a specific subject. Try using the TwitterSearchStream to find and display tweeted images of your favourite
animal.

11.1.2. Exercise 2: The colour of Twitter

Can you make a program that continuously shows the average colour of the last 100 tweeted images?

11.1.3. Exercise 3: Trending images

Images are often (re)-tweeted or shared. Using the histogram features and similarity measures you learned about in the Global
image features tutorial, can you make a program that computes which images have been re-tweeted the most over a fixed number
of tweets?
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Part VI. Machine Learning Fundamentals
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Chapter 12. Classification with Caltech 101
In this tutorial, we’ll go through the steps required to build and evaluate a near state-of-the-art image classifier. Although for the
purposes of this tutorial we’re using features extracted from images, everything you’ll learn about using classifiers can be applied
to features extracted from other forms of media.

To get started you’ll need a new class in an existing OpenIMAJ project, or a new project created with the archetype. The first
thing we need is a dataset of images with which we’ll work. For this tutorial we’ll use a well known set of labelled images called
the Caltech 101 dataset1. The Caltech 101 dataset contains labelled images of 101 object classes together with a set of background
images. OpenIMAJ has built in support for working with the Caltech 101 dataset, and will even automatically download the dataset
for you. To use it, enter the following code:

GroupedDataset<String, VFSListDataset<Record<FImage>>, Record<FImage>> allData = 
   Caltech101.getData(ImageUtilities.FIMAGE_READER);

You’ll remember from the image datasets tutorial that GroupedDatasets are Java Maps with a few extra features. In this case, our
allData object is a GroupedDataset with String keys and the values are lists (actually VFSListDatasets) of Record objects
which are themselves typed on FImages. The Record class holds metadata about each Caltech 101 image. Records have a method
called getImage() that will return the actual image in the format specified by the generic type of the Record (i.e. FImage).

For this tutorial we’ll work with a subset of the classes in the dataset to minimise the time it takes our program to run. We can
create a subset of groups in a GroupedDataset using the GroupSampler class:

GroupedDataset<String, ListDataset<Record<FImage>>, Record<FImage>> data = 
   GroupSampler.sample(allData, 5, false);

This basically creates a new dataset called data from the first 5 classes in the allData dataset. To do an experimental evaluation
with the dataset we need to create two sets of images: a training set which we’ll use to learn the classifier, and a testing set which
we’ll evaluate the classifier with. The common approach with the Caltech 101 dataset is to choose a number of training and testing
instances for each class of images. Programatically, this can be achieved using the GroupedRandomSplitter class:

GroupedRandomSplitter<String, Record<FImage>> splits = 
   new GroupedRandomSplitter<String, Record<FImage>>(data, 15, 0, 15);

In this case, we’ve created a training dataset with 15 images per group, and 15 testing images per group. The zero in the constructor
is the number of validation images which we won’t use in this tutorial. If you take a look at the GroupedRandomSplitter class
you’ll see there are methods to get the training, validation and test datasets.

Our next step is to consider how we’re going to extract suitable image features. For this tutorial we’re going to use a technique
commonly known as the Pyramid Histogram of Words (PHOW). PHOW is itself based on the idea of extracting Dense SIFT
features, quantising the SIFT features into visual words and then building spatial histograms of the visual word occurrences.

The Dense SIFT features are just like the features you used in the “SIFT and feature matching” tutorial, but rather than extracting
the features at interest points detected using a difference-of-Gaussian, the features are extracted on a regular grid across the image.
The idea of a visual word is quite simple: rather than representing each SIFT feature by a 128 dimension feature vector, we represent
it by an identifier. Similar features (i.e. those that have similar, but not necessarily the same, feature vectors) are assigned to have
the same identifier. A common approach to assigning identifiers to features is to train a vector quantiser (just another fancy
name for a type of classifier) using k-means, just like we did in the “Introduction to clustering” tutorial. To build a histogram of
visual words (often called a Bag of Visual Words), all we have to do is count up how many times each identifier appears in an
image and store the values in a histogram. If we’re building spatial histograms, then the process is the same, but we effectively
cut the image into blocks and compute the histogram for each block independently before concatenating the histograms from all
the blocks into a larger histogram.

1 http://www.vision.caltech.edu/Image_Datasets/Caltech101/

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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To get started writing the code for the PHOW implementation, we first need to construct our Dense SIFT extractor - we’re actually
going to construct two objects: a DenseSIFT object and a PyramidDenseSIFT object:

DenseSIFT dsift = new DenseSIFT(5, 7);
PyramidDenseSIFT<FImage> pdsift = new PyramidDenseSIFT<FImage>(dsift, 6f, 7);

The PyramidDenseSIFT class takes a normal DenseSIFT instance and applies it to different sized windows on the regular
sampling grid, although in this particular case we’re only using a single window size of 7 pixels.

The next stage is to write some code to perform K-Means clustering on a sample of SIFT features in order to build a HardAssigner
that can assign features to identifiers. Let’s wrap up the code for this in a new method that takes as input a dataset and a
PyramidDenseSIFT object:

static HardAssigner<byte[], float[], IntFloatPair> trainQuantiser(
             Dataset<Record<FImage>> sample, PyramidDenseSIFT<FImage> pdsift)
{
    List<LocalFeatureList<ByteDSIFTKeypoint>> allkeys = new \
ArrayList<LocalFeatureList<ByteDSIFTKeypoint>>();

    for (Record<FImage> rec : sample) {
        FImage img = rec.getImage();

        pdsift.analyseImage(img);
        allkeys.add(pdsift.getByteKeypoints(0.005f));
    }

    if (allkeys.size() > 10000)
        allkeys = allkeys.subList(0, 10000);

    ByteKMeans km = ByteKMeans.createKDTreeEnsemble(300);
    DataSource<byte[]> datasource = new LocalFeatureListDataSource<ByteDSIFTKeypoint, byte[]>(allkeys);
    ByteCentroidsResult result = km.cluster(datasource);

    return result.defaultHardAssigner();
}

The above method extracts the first 10000 dense SIFT features from the images in the dataset, and then clusters them into 300
separate classes. The method then returns a HardAssigner which can be used to assign SIFT features to identifiers. To use this
method, add the following to your main method after the PyramidDenseSIFT construction:

HardAssigner<byte[], float[], IntFloatPair> assigner = 
   trainQuantiser(GroupedUniformRandomisedSampler.sample(splits.getTrainingDataset(), 30), pdsift);

Notice that we’ve used a GroupedUniformRandomisedSampler to get a random sample of 30 images across all the groups of
the training set with which to train the quantiser. The next step is to write a FeatureExtractor implementation with which
we can train our classifier:

static class PHOWExtractor implements FeatureExtractor<DoubleFV, Record<FImage>> {
    PyramidDenseSIFT<FImage> pdsift;
    HardAssigner<byte[], float[], IntFloatPair> assigner;

    public PHOWExtractor(PyramidDenseSIFT<FImage> pdsift, HardAssigner<byte[], float[], IntFloatPair> \
assigner)
    {
        this.pdsift = pdsift;
        this.assigner = assigner;
    }

    public DoubleFV extractFeature(Record<FImage> object) {
        FImage image = object.getImage();
        pdsift.analyseImage(image);
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        BagOfVisualWords<byte[]> bovw = new BagOfVisualWords<byte[]>(assigner);

        BlockSpatialAggregator<byte[], SparseIntFV> spatial = new BlockSpatialAggregator<byte[], \
SparseIntFV>(
                bovw, 2, 2);

        return spatial.aggregate(pdsift.getByteKeypoints(0.015f), image.getBounds()).normaliseFV();
    }
}

This class uses a BlockSpatialAggregator together with a BagOfVisualWords to compute 4 histograms across the image
(by breaking the image into 2 both horizontally and vertically). The BagOfVisualWords uses the HardAssigner to assign each
Dense SIFT feature to a visual word and the compute the histogram. The resultant spatial histograms are then appended together
and normalised before being returned. Back in the main method of our code we can construct an instance of our PHOWExtractor:

FeatureExtractor<DoubleFV, Record<FImage>> extractor = new PHOWExtractor(pdsift, assigner);

Now we’re ready to construct and train a classifier - we’ll use the linear classifier provided by the LiblinearAnnotator class:

LiblinearAnnotator<Record<FImage>, String> ann = new LiblinearAnnotator<Record<FImage>, String>(
              extractor, Mode.MULTICLASS, SolverType.L2R_L2LOSS_SVC, 1.0, 0.00001);
ann.train(splits.getTrainingDataset());

Finally, we can use the OpenIMAJ evaluation framework to perform an automated evaluation of our classifier’s accuracy for us:

ClassificationEvaluator<CMResult<String>, String, Record<FImage>> eval = 
   new ClassificationEvaluator<CMResult<String>, String, Record<FImage>>(
    ann, splits.getTestDataset(), new CMAnalyser<Record<FImage>, String>(CMAnalyser.Strategy.SINGLE));
    
Map<Record<FImage>, ClassificationResult<String>> guesses = eval.evaluate();
CMResult<String> result = eval.analyse(guesses);

12.1. Exercises

12.1.1. Exercise 1: Apply a Homogeneous Kernel Map

A Homogeneous Kernel Map transforms data into a compact linear representation such that applying a linear classifier
approximates, to a high degree of accuracy, the application of a non-linear classifier over the original data. Try using the
HomogeneousKernelMap class with a KernelType.Chi2 kernel and WindowType.Rectangular window on top of the
PHOWExtractor feature extractor. What effect does this have on performance?

Tip

Construct a HomogeneousKernelMap and use the createWrappedExtractor() method to create a new feature
extractor around the PHOWExtractor that applies the map.

12.1.2. Exercise 2: Feature caching

The DiskCachingFeatureExtractor class can be used to cache features extracted by a FeatureExtractor to
disk. It will generate and save features if they don’t exist, or read from disk if they do. Try to incorporate the
DiskCachingFeatureExtractor into your code. You’ll also need to save the HardAssigner using IOUtils.writeToFile
and load it using IOUtils.readFromFile because the features must be kept with the same HardAssigner that created them.

12.1.3. Exercise 3: The whole dataset

Try running the code over all the classes in the Caltech 101 dataset. Also try increasing the number of visual words to 600, adding
extra scales to the PyramidDenseSIFT (try [4, 6, 8, 10] and reduce the step-size of the DenseSIFT to 3), and instead of using
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the BlockSpatialAggregator, try the PyramidSpatialAggregator with [2, 4] blocks. What level of classifier performance
does this achieve?
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Part VII. Facial Analysis
OpenIMAJ contains a number of tools for face detection, recognition and similarity comparison. In particular, OpenIMAJ
implements a fairly standard recognition pipeline. The pipeline consists of four stages:

1. Face Detection

2. Face Alignment

3. Facial Feature Extraction

4. Face Recognition/Classification

Each stage of the pipeline is configurable, and OpenIMAJ contains a number of different options for each stage as well as offering
the possibility to easily implement more. The pipeline is designed to allow researchers to focus on a specific area of the pipeline
without having to worry about the other components. At the same time, it is fairly easy to modify and evaluate a complete pipeline.

In addition to the parts of the recognition pipeline, OpenIMAJ also includes code for tracking faces in videos and comparing the
similarity of faces.

Bear in mind that as with all computer vision techniques, because of the variability of real-world images, each stage of the pipeline
has the potential to fail.

1. Face Detection
The first stage of the pipeline is face detection. Given an image, a face detector attempts to localise all the faces in the image. All
OpenIMAJ face detectors are subclasses of FaceDetector, and they all produce subclasses of DetectedFace as their output.
Currently, OpenIMAJ implements the following types of face detector:

• org.openimaj.image.processing.face.detection.SandeepFaceDetector: A face detector that searches the image
for areas of skin-tone that have a height/width ratio similar to the golden ratio. The detector will only find faces that are
upright in the image (or upside-down).

• org.openimaj.image.processing.face.detection.HaarCascadeDetector: A face detector based on the classic
Viola-Jones classifier cascade framework. The classifier comes with a number of pre-trained models for frontal and side face
views. The classifier is only mildly invariant to rotation, and it won’t detect non-upright faces.

• org.openimaj.image.processing.face.keypoints.FKEFaceDetector: The Frontal Keypoint Enhanced (FKE) Face
Detector is not actually a detector in it’s own right, but rather a wrapper around the HaarCascadeDetector. The FKE
provides additional information about a face detection by finding facial keypoints on top of the face. The facial keypoints are
located at stable points on the face (sides of the eyes, bottom of the nose, corners of the mouth). The facial keypoints can be
used for alignment and feature extraction as described in the next section.

• org.openimaj.image.processing.face.detection.CLMFaceDetector: The Constrained Local Model (CLM) face
detector uses an underlying HaarCascadeDetector to perform an initial face detection and then fits a statistical 3D face
model to the detected region. The 3D face model can be used to locate facial keypoints within the image and also to determine
the pose of the face. The model is a form of parameterised statistical shape model called a “point distribution model”; this
means that the 3D model has an associated set of parameters which control elements of its shape (i.e. there are parameters
that determine whether the mouth is open or closed, or how big the nose is). During the process of fitting the model to the
image, these parameters are learned automatically, and are exposed through the detections (CLMDetectedFaces) returned
by the CLMFaceDetector.
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• org.openimaj.image.processing.face.detection.IdentityFaceDetector: The identity face detector just returns
a single detection for each input image it is given. The detection covers the entire area of the input image. This is useful for
working with face datasets that contain pre-extracted and cropped faces.

2. Face Alignment
Many forms of face recogniser work better if the facial image patches used for training and querying are aligned to a common
view. This alignment allows for the recognition system to concentrate on the appearance of the face without having to explicitly
deal with variations in the pose of the face. The FaceAligners take in faces detected by a FaceDetector as input, and output
an image with the aligned face rendered within it.

OpenIMAJ contains a number of face alignment options. Currently, these include:

• org.openimaj.image.processing.face.alignment.AffineAligner: An aligner that can align faces detected by the
FKEFaceDetector to a neutral pose by applying an rigid affine transformation estimated from the mapping of facial
keypoints in the detected image to the points in a model with neutral pose.

• org.openimaj.image.processing.face.alignment.CLMAligner: An aligner that warps a face detected by the
CLMFaceDetector to a neutral pose. The alignment is non-rigid and warps each corresponding triangle of the detected face
to a model with neutral pose.

• org.openimaj.image.processing.face.alignment.IdentityAligner: The identity aligner does no alignment; it
just returns the cropped face image from the detector. This is useful when working with face datasets that contain pre-aligned
images.

• org.openimaj.image.processing.face.alignment.MeshWarpAligner: The mesh warp aligner performs a similar
job to the CLMAligner, but for FKEDetectedFaces detected by the FKEFaceDetector. A mesh is constructed over the
set of detected facial keypoints and a non-linear warp is applied to project each keypoint to a canonical position within a
neutral pose.

• org.openimaj.image.processing.face.alignment.RotateScaleAligner: The rotate and scale aligner maps faces
detected by the FKEFaceDetector to an aligned pose by performing a rotation followed by a scaling.

• org.openimaj.image.processing.face.alignment.ScalingAligner: The scaling aligner takes any type of
DetectedFace and scales the cropped face image in the detection to a fixed size.

3. Facial Feature Extraction
Once you have detected a face (and possibly chosen an aligner for it), you need to extract a feature which you can then use
for recognition or similarity comparison. As with the detection and alignment phases, OpenIMAJ contains a number of different
implementations of FacialFeatureExtractors which produce FacialFeatures together with methods for comparing pairs
of FacialFeatures in order to get a similarity measurement. The currently implemented FacialFeatures are listed below:

• CLMPoseFeature: A feature that represents the pose of a face detected with the CLMFaceDetector. The pose consists of the
pitch, roll and yaw of the face. The feature can expose itself as a DoubleFV and can be compared using a FaceFVComparator.

• CLMPoseShapeFeature: A feature that represents the shape parameters and pose of a face detected with the
CLMFaceDetector. The shape vector describes the shape of the face as a small set of variables, and the pose consists of the
pitch, roll and yaw of the face. The feature can expose itself as a DoubleFV and can be compared using a FaceFVComparator.

• CLMShapeFeature: A feature that represents the shape parameters of a face detected with the CLMFaceDetector. The
shape vector describes the shape of the face as a small set of variables. The feature can expose itself as a DoubleFV and can
be compared using a FaceFVComparator.
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• DoGSIFTFeature: A feature built by detecting local interest points on the face using a Difference of Gaussian pyramid, and
then describing these using SIFT features. The DoGSIFTFeatureComparator can be used to compare these features.

• EigenFaceFeature: A feature built by projecting the pixels of an aligned face into a lower-dimensional space learned
through PCA. The feature extractor must be “trained” with a set of example aligned faces before it can be used. This forms
the core of the classic Eigen Faces algorithm. The feature can expose itself as a DoubleFV and can be compared using a
FaceFVComparator.

• FaceImageFeature: A feature built directly from the pixels of an aligned face. No normalisation is performed. The feature
can expose itself as a FloatFV and can be compared using a FaceFVComparator.

• FacePatchFeature: A feature built by concatenating the pixels from each of the normalised circular patches around each
facial keypoint from an FKEDetectedFace. The feature can expose itself as a FloatFV and can be compared using a
FaceFVComparator.

• FisherFaceFeature: A feature built by projecting the pixels of an aligned face into a lower-dimensional space learned
through Fisher’s Linear Discriminant Analysis. The feature extractor must be “trained” with a set of example aligned faces
before it can be used. This forms the core of the classic Fisher Faces algorithm. The feature can expose itself as a DoubleFV
and can be compared using a FaceFVComparator.

• LocalLBPHistogram: Feature constructed by breaking the image into blocks and computing histograms of Local Binary
Patterns (LBPs) for each block. All histograms are concatenated to form the final feature. The feature can expose itself as a
FloatFV and can be compared using a FaceFVComparator.

• LtpDtFeature: A feature built from Local Trinary Patterns (LTPs) within an aligned image. The features
are constructed to be compared using a Euclidean Distance Transform with the LtpDtFeatureComparator or
ReversedLtpDtFeatureComparator comparators.

4. Face Recognition/Classification
The final stage of the pipeline uses extracted FacialFeatures to perform face recognition (determining who’s face it is) or
classification (determining some characteristic of the face; for example male/female, glasses/no-glasses, etc). All recognisers/
classifiers are instances of FaceRecogniser. There are a couple of default implementations, but the most common is the
AnnotatorFaceRecogniser which can use any form of IncrementalAnnotator to perform the actual classification. There
are also specific recognisers for the Eigen Face and Fisher Faces algorithms that can be constructed with internal recognisers
(usually a AnnotatorFaceRecogniser) that perform specific machine learning operations. All FaceRecognisers are capable of
serialising and deserialising their internal state to disk. All recognisers are also capable of incremental learning (i.e. new examples
can be added at any point).

Currently, there are implementations of IncrementalAnnotator that implement common machine-learning algorithms
including k-nearest-neighbours and naive-bayes. Batch annotators (BatchAnnotators), such as a Support Vector Machine
annotator can also be used by using an adaptor to convert the BatchAnnotator into an IncrementalAnnotator (for example
a InstanceCachingIncrementalBatchAnnotator).

The face detection and recognition components can be managed separately, however, the FaceRecognitionEngine class can
be used to simplify usage.

5. Face Similarity
The FaceSimilarityEngine class provides methods for assessing the similarity of faces by comparing FacialFeatures using
appropriate comparators.
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Chapter 13. Face recognition 101: Eigenfaces
Before we get started looking at the rich array of tools OpenIMAJ offers for working with faces, lets first look at how we can
implement one of the earliest successful face recognition algorithms called "Eigenfaces". The basic idea behind the Eigenfaces
algorithm is that face images are "projected" into a low dimensional space in which they can be compared efficiently. The hope
is that intra-face distances (i.e. distances between images of the same person) are smaller than inter-face distances (the distance
between pictures of different people) within the projected space (although there is no algorithmic guarantee of this). Fundamentally,
this projection of the image is a form of feature extraction, similar to what we've seen in previous chapters of this tutorial. Unlike the
extractors we've looked at previously however, for Eigenfaces we actually have to "learn" the feature extractor from the image data.
Once we've extracted the features, classification can be performed using any standard technique, although 1-nearest-neighbour
classification is the standard choice for the Eigenfaces algorithm.

The lower dimensional space used by the Eigenfaces algorithm is actually learned through a process called Principle Component
Analysis (PCA), although sometimes you'll also see this referred to as the discrete Karhunen–Loève transform. The PCA algorithm
finds a set of orthogonal axes (i.e. axes at right angles) that best describe the variance of the data such that the first axis is
oriented along the direction of highest variance. It turns out that computing the PCA boils down to performing a well-know
mathematical technique called the eigendecomposition (hence the name Eigenfaces) on the covariance matrix of the data. Formally,
the eigendecomposition factorises a matrix, A, into a canonical form such that Av = λv, where v is a set of vectors called the
eigenvectors, and each vector is paired with a scalar from λ called an eigenvalue. The eigenvectors form a mathematical basis; a
set of right-angled vectors that can be used as axes in a space. By picking a subset of eigenvectors with the largest eigenvalues it
is possible to create a basis that can approximate the original space in far fewer dimensions.

The Eigenfaces algorithm is simple to implement using OpenIMAJ using the EigenImages class. The EigenImages class
automatically deals with converting the input images into vectors and zero-centering them (subtracting the mean) before applying
PCA.

Eigenfaces will really only work well on (near) full-frontal face images. In addition, because of the way Eigenfaces works, the face
images we use must all be the same size, and must be aligned (typically such that the eyes of each subject must be in the same pixel
locations). For the purposes of this tutorial we'll use a dataset of approximately aligned face images from the AT&T "The Database
of Faces" (formerly "The ORL Database of Faces")1. Start by creating a new OpenIMAJ project, and then load the dataset:

VFSGroupDataset<FImage> dataset = 
    new VFSGroupDataset<FImage>("zip:http://datasets.openimaj.org/att_faces.zip", \
ImageUtilities.FIMAGE_READER);

For the purposes of experimentation, we'll need to split the dataset into two halves; one for training our recogniser, and one for
testing it. Just as in the Caltech 101 classification tutorial, this can be achieved with a GroupedRandomSplitter:

int nTraining = 5;
int nTesting = 5;
GroupedRandomSplitter<String, FImage> splits = 
    new GroupedRandomSplitter<String, FImage>(dataset, nTraining, 0, nTesting);
GroupedDataset<String, ListDataset<FImage>, FImage> training = splits.getTrainingDataset();
GroupedDataset<String, ListDataset<FImage>, FImage> testing = splits.getTestDataset();

The first step in implementing an Eigenfaces recogniser is to use the training images to learn the PCA basis which we'll use to
project the images into features we can use for recognition. The EigenImages class needs a list of images from which to learn
the basis (i.e. all the training images from each person), and also needs to know how many dimensions we want our features to be
(i.e. how many of the eigenvectors corresponding to the biggest eigenvalues to keep):

List<FImage> basisImages = DatasetAdaptors.asList(training);
int nEigenvectors = 100;

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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EigenImages eigen = new EigenImages(nEigenvectors);
eigen.train(basisImages);

One way of thinking about how we use the basis is that any face image can literally be decomposed as weighted summation of
the basis vectors, and thus each element of the feature we'll extract represents the weight of the corresponding basis vector. This
of course implies that it should be possible to visualise the basis vectors as meaningful images. This is indeed the case, and the
EigenImages class makes it easy to do. Let's draw the first 12 basis vectors (each of these basis images is often referred to as
an EigenFace):

List<FImage> eigenFaces = new ArrayList<FImage>();
for (int i = 0; i < 12; i++) {
    eigenFaces.add(eigen.visualisePC(i));
}
DisplayUtilities.display("EigenFaces", eigenFaces);

At this point you can run your code. You should see an image very similar to the one below displayed:

Now we need to build a database of features from the training images. We'll use a Map of Strings (the person identifier) to an array
of features (corresponding to all the features of all the training instances of the respective person):

Map<String, DoubleFV[]> features = new HashMap<String, DoubleFV[]>();
for (final String person : training.getGroups()) {
    final DoubleFV[] fvs = new DoubleFV[nTraining];

    for (int i = 0; i < nTraining; i++) {
        final FImage face = training.get(person).get(i);
        fvs[i] = eigen.extractFeature(face);
    }
    features.put(person, fvs);
}

Now we've got all the features stored, in order to estimate the identity of an unknown face image, all we need to do is extract the
feature from this image, find the database feature with the smallest distance (i.e. Euclidean distance), and return the identifier of
the corresponding person. Let's loop over all the testing images, and estimate which person they belong to. As we know the true
identity of these people, we can compute the accuracy of the recognition:
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double correct = 0, incorrect = 0;
for (String truePerson : testing.getGroups()) {
    for (FImage face : testing.get(truePerson)) {
        DoubleFV testFeature = eigen.extractFeature(face);

        String bestPerson = null;
        double minDistance = Double.MAX_VALUE;
        for (final String person : features.keySet()) {
            for (final DoubleFV fv : features.get(person)) {
                double distance = fv.compare(testFeature, DoubleFVComparison.EUCLIDEAN);

                if (distance < minDistance) {
                    minDistance = distance;
                    bestPerson = person;
                }
            }
        }

        System.out.println("Actual: " + truePerson + "\tguess: " + bestPerson);

        if (truePerson.equals(bestPerson))
            correct++;
        else
            incorrect++;
    }
}

System.out.println("Accuracy: " + (correct / (correct + incorrect)));

Now run the code again. You should see the actual person identifier and predicted identifier printed as each face is recognised. At
the end, the overall performance will be printed and should be close to 93% (there will be some variability as the test and training
data is split randomly each time the program is run).

13.1. Exercises

13.1.1. Exercise 1: Reconstructing faces

An interesting property of the features extracted by the Eigenfaces algorithm (specifically from the PCA process) is that it's possible
to reconstruct an estimate of the original image from the feature. Try doing this by building a PCA basis as described above, and
then extract the feature of a randomly selected face from the test-set. Use the EigenImages#reconstruct() to convert the
feature back into an image and display it. You will need to normalise the image (FImage#normalise()) to ensure it displays
correctly as the reconstruction might give pixel values bigger than 1 or smaller than 0.

13.1.2. Exercise 2: Explore the effect of training set size

The number of images used for training can have a big effect in the performance of your recogniser. Try reducing the number of
training images (keep the number of testing images fixed at 5). What do you observe?

13.1.3. Exercise 3: Apply a threshold

In the original Eigenfaces paper, a variant of nearest-neighbour classification was used that incorporated a distance threshold.
If the distance between the query face and closest database face was greater than a threshold, then an unknown result would be
returned, rather than just returning the label of the closest person. Can you alter your code to include such a threshold? What
is a good value for the threshold?
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Part VIII. Advanced Techniques
OpenIMAJ contains a number of advanced features that are not directly related to multimedia processing, analysis and generation.
This part of the tutorial looks at some of those features. In particular there are tutorials looking at how to make use of multiple
processors using OpenIMAJ's Parallel and how to reference your code using OpenIMAJ's Reference annotations.
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Chapter 14. Parallel Processing
Modern computers tend to have multiple processors. By making use of all the processing ability of your machine your programs
can run much faster. Writing code that takes advantage of multiple processors in Java usually involves either manually creating and
managing threads, or using a higher level concurrent programming abstraction library, such as the classes found in the excellent
java.util.concurrent package.

A common use-case for multithreading in multimedia analysis is the application of an operation to a collection of objects - for
example, the extraction of features from a list of images. This kind of task can be effectively parallelised using Java’s concurrent
classes, but requires a large amount of boiler-plate code to be written each time. To help reduce the programming overhead
associated with this kind of parallel processing, OpenIMAJ includes a Parallel class that contains a number of methods that
allow you to efficiently and effectively write multi-threaded loops.

To get started playing with the Parallel class, create a new OpenIMAJ project using the archetype, or add a new class and main
method to an existing project. Firstly, lets see how we can write the parallel equivalent of a for (int i=0; i<10; i++) loop:

Parallel.forIndex(0, 10, 1, new Operation<Integer>() {
 public void perform(Integer i) {
     System.out.println(i);
 }
});

Try running this code; you’ll see that all the numbers from 0 to 9 are printed, although not necessarily in the correct order. If
you run the code again, you’ll probably see the order change. It’s important to note that the when parallelising a loop that the
order of operations is not deterministic.

Now let’s explore a more realistic scenario in which we might want to apply parallelisation. We’ll build a program to compute
the normalised average of the images in a dataset. Firstly, let’s write the non-parallel version of the code. We’ll start by loading a
dataset of images; in this case we’ll use the CalTech 101 dataset we used in the Classification 101 tutorial, but rather than loading
record object, we’ll load the images directly:

VFSGroupDataset<MBFImage> allImages = Caltech101.getImages(ImageUtilities.MBFIMAGE_READER);

We’ll also restrict ourselves to using a subset of the first 8 groups (image categories) in the dataset:

GroupedDataset<String, ListDataset<MBFImage>, MBFImage> images = GroupSampler.sample(allImages, 8, false);

We now want to do the processing. For each group we want to build the average image. We do this by looping through the images
in the group, resampling and normalising each image before drawing it in the centre of a white image, and then adding the result
to an accumulator. At the end of the loop we divide the accumulated image by the number of samples used to create it. The code
to perform these operations would look like this:

List<MBFImage> output = new ArrayList<MBFImage>();
ResizeProcessor resize = new ResizeProcessor(200);
for (ListDataset<MBFImage> clzImages : images.values()) {
    MBFImage current = new MBFImage(200, 200, ColourSpace.RGB);

    for (MBFImage i : clzImages) {
        MBFImage tmp = new MBFImage(200, 200, ColourSpace.RGB);
        tmp.fill(RGBColour.WHITE);

        MBFImage small = i.process(resize).normalise();
        int x = (200 - small.getWidth()) / 2;
        int y = (200 - small.getHeight()) / 2;
        tmp.drawImage(small, x, y);
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        current.addInplace(tmp);
    }
    current.divideInplace((float) clzImages.size());
    output.add(current);
}

We can use the DisplayUtilities class to display the results:

DisplayUtilities.display("Images", output);

Before we try running the program, we’ll also add some timing code to see how long it takes. Before the outer loop (the one over
the groups provided by images.values()), add the following:

Timer t1 = Timer.timer();

and, after the outer loop (just before the display code) add the following:

System.out.println("Time: " + t1.duration() + "ms");

You can now run the code, and after a short while (on my laptop it takes about 7248 milliseconds (7.2 seconds)) the resultant
averaged images will be displayed. An example is shown below. Can you tell what object is depicted by each average image? For
many object types in the CalTech 101 dataset it is quite easy, and this is one of the reasons that the dataset has been criticised as
being too easy for classification experiments in the literature.

Now we’ll look at parallelising this code. We essentially have three options for parallelisation; we could parallelise the outer loop,
parallelise the inner one, or parallelise both. There are many tradeoffs that need to be considered including the amount of memory
usage and the task granularity in deciding how to best parallelise code. For the purposes of this tutorial, we’ll work with the inner
loop. Using the Parallel.for method, we can re-write the inner-loop as follows:

Parallel.forEach(clzImages, new Operation<MBFImage>() {
    public void perform(MBFImage i) {
        final MBFImage tmp = new MBFImage(200, 200, ColourSpace.RGB);
        tmp.fill(RGBColour.WHITE);
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        final MBFImage small = i.process(resize).normalise();
        final int x = (200 - small.getWidth()) / 2;
        final int y = (200 - small.getHeight()) / 2;
        tmp.drawImage(small, x, y);

        synchronized (current) {
            current.addInplace(tmp);
        }
    }
});

For this to compile, you’ll also need to make the current image final by adding the final keyword to the line in which it
is created:

final MBFImage current = new MBFImage(200, 200, ColourSpace.RGB);

Notice that in the parallel version of the loop we have to put a synchronized block around the part where we accumulate into
the current image. This is to stop multiple threads trying to alter the image concurrently. If we now run the code, we should
hopefully see an improvement in the time it takes to compute the averages. You might also need to increase the amount of memory
available to Java for the program to run successfully.

On my laptop, with 8 CPU cores the running time drops to ~3100 milliseconds. You might be thinking that because we have gone
from 1 to 8 CPU cores that the speed-up would be greater; there are many reasons why that is not the case in practice, but the
biggest is that the process that we’re running is rather I/O bound because the underlying dataset classes we’re using retrieve the
images from disk each time they’re needed. A second issue is that there are a couple of slight bottlenecks in our code; in particular
notice that we’re creating a temporary image for each image that we process, and that we also have to synchronise on the current
accumulator image for each image. We can factor out these problems by modifying the code to use the partitioned variant of the
for-each loop in the Parallel class. Instead of giving each thread a single image at a time, the partitioned variant will feed each
thread a collection of images (provided as an Iterator) to process:

Parallel.forEachPartitioned(new RangePartitioner<MBFImage>(clzImages), new Operation<Iterator<MBFImage>>() {
 public void perform(Iterator<MBFImage> it) {
     MBFImage tmpAccum = new MBFImage(200, 200, 3);
     MBFImage tmp = new MBFImage(200, 200, ColourSpace.RGB);

     while (it.hasNext()) {
         final MBFImage i = it.next();
         tmp.fill(RGBColour.WHITE);

         final MBFImage small = i.process(resize).normalise();
         final int x = (200 - small.getWidth()) / 2;
         final int y = (200 - small.getHeight()) / 2;
         tmp.drawImage(small, x, y);
         tmpAccum.addInplace(tmp);
     }
     synchronized (current) {
         current.addInplace(tmpAccum);
     }
 }
});

The RangePartitioner in the above code will break the images in clzImages into as many (approximately equally sized)
chunks as there are available CPU cores. This means that the perform method will be called many fewer times, but will do more
work - what we’ve done is called increasing the task granularity. Notice that we created an extra working image called tmpAccum
to hold the intermediary results. This means memory usage will be increased, however, also notice that whilst we still have to
synchronise on the current image, we do far fewer times (once per CPU core in fact). Try running the improved version of the
code; on my laptop it reduces the total running time even further to ~2900 milliseconds.
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14.1. Exercises

14.1.1. Exercise 1: Parallelise the outer loop

As we discussed earlier in the tutorial, there were three primary ways in which we could have approached the parallelisation of
the image-averaging program. Instead of parallelising the inner loop, can you modify the code to parallelise the outer loop instead?
Does this make the code faster? What are the pros and cons of doing this?
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