public static enum GaussianMixtureModelEM.CovarianceType extends Enum<GaussianMixtureModelEM.CovarianceType>
GaussianMixtureModelEM
.Enum Constant and Description |
---|
Diagonal
Gaussians with diagonal covariance matrices.
|
Full
Gaussians with full covariance
|
Spherical
Spherical Gaussians: variance is the same along all axes and zero
across-axes.
|
Tied
Gaussians with a tied covariance matrix; the same covariance matrix
is shared by all the gaussians.
|
Modifier and Type | Method and Description |
---|---|
protected abstract MultivariateGaussian[] |
createGaussians(int ngauss,
int ndims) |
protected abstract void |
mstep(GaussianMixtureModelEM.EMGMM gmm,
GaussianMixtureModelEM learner,
Jama.Matrix X,
Jama.Matrix responsibilities,
Jama.Matrix weightedXsum,
double[] inverseWeights)
Mode specific maximisation-step.
|
protected abstract void |
setCovariances(MultivariateGaussian[] gaussians,
Jama.Matrix cv) |
static GaussianMixtureModelEM.CovarianceType |
valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static GaussianMixtureModelEM.CovarianceType[] |
values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
public static final GaussianMixtureModelEM.CovarianceType Spherical
public static final GaussianMixtureModelEM.CovarianceType Diagonal
public static final GaussianMixtureModelEM.CovarianceType Full
public static final GaussianMixtureModelEM.CovarianceType Tied
public static GaussianMixtureModelEM.CovarianceType[] values()
for (GaussianMixtureModelEM.CovarianceType c : GaussianMixtureModelEM.CovarianceType.values()) System.out.println(c);
public static GaussianMixtureModelEM.CovarianceType valueOf(String name)
name
- the name of the enum constant to be returned.IllegalArgumentException
- if this enum type has no constant with the specified nameNullPointerException
- if the argument is nullprotected abstract MultivariateGaussian[] createGaussians(int ngauss, int ndims)
protected abstract void setCovariances(MultivariateGaussian[] gaussians, Jama.Matrix cv)
protected abstract void mstep(GaussianMixtureModelEM.EMGMM gmm, GaussianMixtureModelEM learner, Jama.Matrix X, Jama.Matrix responsibilities, Jama.Matrix weightedXsum, double[] inverseWeights)
GaussianMixtureModelEM#gaussians
.gmm
- the mixture model being learnedX
- the dataresponsibilities
- matrix with the same number of rows as X where each col is
the amount that the data point belongs to each gaussianweightedXsum
- responsibilities.T * XinverseWeights
- 1/weights