1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 package org.openimaj.experiment.gmm.retrieval;
31
32 import org.openimaj.feature.FeatureVector;
33 import org.openimaj.feature.local.LocalFeature;
34 import org.openimaj.feature.local.list.LocalFeatureList;
35 import org.openimaj.math.statistics.distribution.MixtureOfGaussians;
36 import org.openimaj.ml.gmm.GaussianMixtureModelEM;
37 import org.openimaj.ml.gmm.GaussianMixtureModelEM.CovarianceType;
38 import org.openimaj.util.array.ArrayUtils;
39 import org.openimaj.util.function.Function;
40
41 import Jama.Matrix;
42
43
44
45
46
47
48 public class GMMFromFeatures implements Function<
49 LocalFeatureList<? extends LocalFeature<?,? extends FeatureVector>>,
50 MixtureOfGaussians
51 >
52 {
53
54
55
56
57 public static final int DEFAULT_COMPONENTS = 10;
58
59
60
61 public static final CovarianceType DEFAULT_COVARIANCE = GaussianMixtureModelEM.CovarianceType.Spherical;
62
63 private GaussianMixtureModelEM gmm;
64
65
66
67 public GMMFromFeatures() {
68 this.gmm = new GaussianMixtureModelEM(DEFAULT_COMPONENTS, DEFAULT_COVARIANCE);
69 }
70
71
72
73
74 public GMMFromFeatures(CovarianceType type) {
75 this.gmm = new GaussianMixtureModelEM(DEFAULT_COMPONENTS, type);
76 }
77
78
79
80
81 public GMMFromFeatures(int nComps) {
82 this.gmm = new GaussianMixtureModelEM(nComps, DEFAULT_COVARIANCE);
83 }
84
85
86
87
88
89 public GMMFromFeatures(int nComps,CovarianceType type) {
90 this.gmm = new GaussianMixtureModelEM(nComps, type);
91 }
92
93 @Override
94 public MixtureOfGaussians apply(LocalFeatureList<? extends LocalFeature<?,? extends FeatureVector>> features) {
95 System.out.println("Creating double array...");
96 double[][] doubleFeatures = new double[features.size()][];
97 int i = 0;
98 for (LocalFeature<?,?> localFeature : features) {
99 doubleFeatures[i] = ArrayUtils.divide(localFeature.getFeatureVector().asDoubleVector(), 128);
100 i++;
101 }
102 System.out.println(String.format("Launching EM with double array: %d x %d",doubleFeatures.length,doubleFeatures[0].length));
103 return this.gmm.estimate(new Matrix(doubleFeatures));
104 }
105
106
107
108 }