View Javadoc

1   /**
2    * Copyright (c) 2011, The University of Southampton and the individual contributors.
3    * All rights reserved.
4    *
5    * Redistribution and use in source and binary forms, with or without modification,
6    * are permitted provided that the following conditions are met:
7    *
8    *   * 	Redistributions of source code must retain the above copyright notice,
9    * 	this list of conditions and the following disclaimer.
10   *
11   *   *	Redistributions in binary form must reproduce the above copyright notice,
12   * 	this list of conditions and the following disclaimer in the documentation
13   * 	and/or other materials provided with the distribution.
14   *
15   *   *	Neither the name of the University of Southampton nor the names of its
16   * 	contributors may be used to endorse or promote products derived from this
17   * 	software without specific prior written permission.
18   *
19   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
20   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22   * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
23   * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
26   * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29   */
30  package org.openimaj.math.matrix.algorithm.ica;
31  
32  import org.openimaj.math.matrix.MatrixUtils;
33  import org.openimaj.util.pair.IndependentPair;
34  
35  import Jama.Matrix;
36  
37  public abstract class IndependentComponentAnalysis {
38  	public abstract Matrix getSignalToInterferenceMatrix();
39  
40  	public abstract Matrix getDemixingMatrix();
41  
42  	public abstract Matrix getIndependentComponentMatrix();
43  
44  	/**
45  	 * Estimate the independent components of the given data array. Each row
46  	 * corresponds to an observation with the number of dimensions equal to the
47  	 * number of columns.
48  	 * 
49  	 * @param data
50  	 *            the data
51  	 */
52  	public void estimateComponents(double[][] data) {
53  		estimateComponents(new Matrix(data));
54  	}
55  
56  	/**
57  	 * Estimate the independent components of the given data array. Each row
58  	 * corresponds to an observation with the number of dimensions equal to the
59  	 * number of columns.
60  	 * 
61  	 * @param data
62  	 *            the data
63  	 */
64  	public void estimateComponents(Matrix data) {
65  		final IndependentPair<Matrix, double[]> p = computeMeanCentre(data);
66  		final Matrix meanCentredX = p.firstObject();
67  		final double[] mean = p.getSecondObject();
68  
69  		final IndependentPair<Matrix, Matrix> p2 = decorrelate(meanCentredX);
70  		final Matrix Z = p2.firstObject();
71  		final Matrix CC = p2.secondObject();
72  		estimateComponentsWhitened(Z, mean, meanCentredX, CC);
73  	}
74  
75  	private IndependentPair<Matrix, Matrix> decorrelate(Matrix meanCentredX) {
76  		final Matrix C = MatrixUtils.covariance(meanCentredX.transpose());
77  		final Matrix CC = MatrixUtils.invSqrtSym(C);
78  		return IndependentPair.pair(CC.times(meanCentredX), CC);
79  	}
80  
81  	private IndependentPair<Matrix, double[]> computeMeanCentre(Matrix m) {
82  		final double[][] data = m.getArray();
83  
84  		final double[] mean = new double[data.length];
85  
86  		for (int j = 0; j < data.length; j++)
87  			for (int i = 0; i < data[0].length; i++)
88  				mean[j] += data[j][i];
89  
90  		for (int i = 0; i < data.length; i++)
91  			mean[i] /= data[0].length;
92  
93  		final Matrix mat = new Matrix(data.length, data[0].length);
94  		final double[][] matdat = mat.getArray();
95  
96  		for (int j = 0; j < data.length; j++)
97  			for (int i = 0; i < data[0].length; i++)
98  				matdat[j][i] = (data[j][i] - mean[j]);
99  
100 		return IndependentPair.pair(mat, mean);
101 	}
102 
103 	/**
104 	 * Estimate the IC's from the given decorrelated (mean-centred and whitened)
105 	 * data matrix, Z.
106 	 * 
107 	 * @param Z
108 	 *            the whitened data; one observation per row
109 	 * @param mean
110 	 *            the mean of each dimension
111 	 * @param X
112 	 *            the mean-centered data; one observation per row
113 	 */
114 	protected abstract void estimateComponentsWhitened(Matrix Z, double[] mean, Matrix X, Matrix CC);
115 }