1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 package org.openimaj.ml.clustering.kdtree;
31
32 import java.io.DataInput;
33 import java.io.DataOutput;
34 import java.io.IOException;
35 import java.io.PrintWriter;
36 import java.util.HashMap;
37 import java.util.List;
38 import java.util.Map;
39 import java.util.Scanner;
40
41 import org.openimaj.ml.clustering.IndexClusters;
42 import org.openimaj.ml.clustering.SpatialClusters;
43 import org.openimaj.ml.clustering.assignment.HardAssigner;
44 import org.openimaj.util.pair.IntDoublePair;
45 import org.openimaj.util.tree.DoubleKDTree;
46 import org.openimaj.util.tree.DoubleKDTree.KDTreeNode;
47
48
49
50
51
52 public class KDTreeClusters extends IndexClusters implements SpatialClusters<double[]> {
53
54
55 private final class KDHardTreeAssigner implements HardAssigner<double[], double[], IntDoublePair> {
56
57 private Map<int[], Integer> clusterToIndex;
58
59 public KDHardTreeAssigner() {
60 this.clusterToIndex = new HashMap<int[],Integer>();
61 for (int i = 0; i < KDTreeClusters.this.leaves.size(); i++) {
62 this.clusterToIndex.put(leaves.get(i), i);
63 }
64 }
65
66 @Override
67 public int numDimensions() {
68 return dims;
69 }
70
71 @Override
72 public int[] assign(double[][] data) {
73 int[] ret = new int[data.length];
74 for (int i = 0; i < ret.length; i++) {
75 ret[i] = assign(data[i]);
76 }
77 return ret;
78 }
79
80 @Override
81 public int assign(double[] data) {
82 KDTreeNode toFollow = tree.root;
83 while(toFollow.indices == null){
84 if(data[toFollow.discriminantDimension] < toFollow.discriminant){
85 toFollow = toFollow.left;
86 }
87 else{
88 toFollow = toFollow.right;
89 }
90 }
91 return this.clusterToIndex.get(toFollow.indices);
92 }
93
94 @Override
95 public void assignDistance(double[][] data, int[] indices, double[] distances) {
96 throw new UnsupportedOperationException();
97 }
98
99 @Override
100 public IntDoublePair assignDistance(double[] data) {
101 throw new UnsupportedOperationException();
102 }
103
104 @Override
105 public int size() {
106 return numClusters();
107 }
108 }
109
110 private List<int[]> leaves;
111 private int dims;
112 private DoubleKDTree tree;
113
114
115
116
117
118 public KDTreeClusters(DoubleKDTree tree, int dims) {
119 this.tree = tree;
120 this.leaves = tree.leafIndices();
121 this.dims = dims;
122 this.clusters = new int[leaves.size()][];
123 for (int i = 0; i < clusters.length; i++) {
124 clusters[i] = leaves.get(i);
125 this.nEntries += this.clusters[i].length;
126 }
127
128 }
129
130 @Override
131 public int numDimensions() {
132 return dims;
133 }
134
135 @Override
136 public int numClusters() {
137 return leaves.size();
138 }
139
140 @Override
141 public HardAssigner<double[], ?, ?> defaultHardAssigner() {
142 return new KDHardTreeAssigner();
143 }
144 @Override
145 public void readASCII(Scanner in) throws IOException { throw new UnsupportedOperationException(); }
146
147 @Override
148 public String asciiHeader() { throw new UnsupportedOperationException(); }
149
150 @Override
151 public void readBinary(DataInput in) throws IOException{ throw new UnsupportedOperationException(); }
152
153 @Override
154 public byte[] binaryHeader() { throw new UnsupportedOperationException(); }
155
156 @Override
157 public void writeASCII(PrintWriter out) throws IOException { throw new UnsupportedOperationException(); }
158
159 @Override
160 public void writeBinary(DataOutput out) throws IOException { throw new UnsupportedOperationException(); }
161
162 }