1 /** 2 * Copyright (c) 2011, The University of Southampton and the individual contributors. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without modification, 6 * are permitted provided that the following conditions are met: 7 * 8 * * Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * * Redistributions in binary form must reproduce the above copyright notice, 12 * this list of conditions and the following disclaimer in the documentation 13 * and/or other materials provided with the distribution. 14 * 15 * * Neither the name of the University of Southampton nor the names of its 16 * contributors may be used to endorse or promote products derived from this 17 * software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 26 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 package org.openimaj.ml.clustering.spectral; 31 32 import org.apache.log4j.Logger; 33 import org.openimaj.feature.DoubleFV; 34 import org.openimaj.feature.DoubleFVComparison; 35 import org.openimaj.feature.FeatureExtractor; 36 import org.openimaj.ml.clustering.SimilarityClusterer; 37 38 import ch.akuhn.matrix.SparseMatrix; 39 40 /** 41 * Wraps the functionality of a {@link SimilarityClusterer} around a dataset 42 * 43 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 44 * 45 * @param <T> 46 */ 47 public class NormalisedSimilarityDoubleClustererWrapper<T> extends DoubleFVSimilarityFunction<T> { 48 49 private double eps; 50 51 /** 52 * 53 * @param extractor 54 * @param eps 55 */ 56 public NormalisedSimilarityDoubleClustererWrapper(FeatureExtractor<DoubleFV, T> extractor, double eps) { 57 super(extractor); 58 this.eps = eps; 59 } 60 61 Logger logger = Logger.getLogger(NormalisedSimilarityDoubleClustererWrapper.class); 62 63 @Override 64 protected SparseMatrix similarity() { 65 final SparseMatrix mat = new SparseMatrix(feats.length, feats.length); 66 final DoubleFVComparison dist = DoubleFVComparison.EUCLIDEAN; 67 double maxD = 0; 68 for (int i = 0; i < feats.length; i++) { 69 for (int j = i; j < feats.length; j++) { 70 double d = dist.compare(feats[i], feats[j]); 71 if (d > eps) 72 d = Double.NaN; 73 else { 74 maxD = Math.max(d, maxD); 75 } 76 mat.put(i, j, d); 77 mat.put(j, i, d); 78 } 79 } 80 final SparseMatrix mat_norm = new SparseMatrix(feats.length, feats.length); 81 for (int i = 0; i < feats.length; i++) { 82 for (int j = i; j < feats.length; j++) { 83 double d = mat.get(i, j); 84 if (Double.isNaN(d)) { 85 continue; 86 } 87 else { 88 d /= maxD; 89 } 90 mat_norm.put(i, j, 1 - d); 91 mat_norm.put(j, i, 1 - d); 92 } 93 } 94 return mat_norm; 95 } 96 97 }