View Javadoc

1   /**
2    * Copyright (c) 2011, The University of Southampton and the individual contributors.
3    * All rights reserved.
4    *
5    * Redistribution and use in source and binary forms, with or without modification,
6    * are permitted provided that the following conditions are met:
7    *
8    *   * 	Redistributions of source code must retain the above copyright notice,
9    * 	this list of conditions and the following disclaimer.
10   *
11   *   *	Redistributions in binary form must reproduce the above copyright notice,
12   * 	this list of conditions and the following disclaimer in the documentation
13   * 	and/or other materials provided with the distribution.
14   *
15   *   *	Neither the name of the University of Southampton nor the names of its
16   * 	contributors may be used to endorse or promote products derived from this
17   * 	software without specific prior written permission.
18   *
19   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
20   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22   * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
23   * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
26   * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29   */
30  package org.openimaj.ml.clustering.spectral;
31  
32  
33  import org.apache.commons.math.stat.descriptive.moment.Variance;
34  import org.apache.log4j.Logger;
35  import org.openimaj.feature.DoubleFV;
36  import org.openimaj.feature.FeatureExtractor;
37  
38  import ch.akuhn.matrix.DenseMatrix;
39  import ch.akuhn.matrix.Matrix;
40  import ch.akuhn.matrix.SparseMatrix;
41  
42  /**
43   * Construct a similarity matrix using a Radial Basis Function 
44   * @author Sina Samangooei (ss@ecs.soton.ac.uk)
45   *
46   * @param <T>
47   */
48  public class RBFSimilarityDoubleClustererWrapper<T> extends DoubleFVSimilarityFunction<T> {
49  	
50  	private double[] var;
51  	Logger logger = Logger.getLogger(RBFSimilarityDoubleClustererWrapper.class);
52  
53  	/**
54  	 * @param extractor
55  	 */
56  	public RBFSimilarityDoubleClustererWrapper(FeatureExtractor<DoubleFV,T> extractor) {
57  		super(extractor);
58  	}
59  	
60  	private void prepareVariance() {
61  		this.var = new double[this.feats[0].length];
62  		Matrix m = new DenseMatrix(feats);
63  		double[] colArr = new double[this.feats.length];
64  		Variance v = new Variance();
65  		for (int i = 0; i < this.var.length; i++) {
66  			m.column(i).storeOn(colArr, 0);
67  			this.var[i] = v.evaluate(colArr);
68  		}
69  	}
70  
71  	@Override
72  	protected SparseMatrix similarity() {
73  		prepareVariance();
74  		int N = feats.length;
75  		SparseMatrix sim = new SparseMatrix(N,N);
76  		for (int i = 0; i < N; i++) {
77  			double[] di = feats[i];
78  			sim.put(i,i,1);
79  			for (int j = i+1; j < N; j++) {
80  				double[] dj = feats[j];
81  				double expInner = 0;
82  				// -1*sum((data(i,:)-data(j,:)).^2./(2*my_var))
83  				for (int k = 0; k < dj.length; k++) {
84  					double kv = di[k] - dj[k];
85  					expInner += (kv * kv) / (2 * this.var[k]);
86  				}
87  				
88  				double v = Math.exp(-1 * expInner);
89  				sim.put(i, j, v);
90  				sim.put(j, i, v);
91  			}
92  		}
93  		return sim;
94  	}
95  	
96  	
97  
98  }