1 /** 2 * Copyright (c) 2011, The University of Southampton and the individual contributors. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without modification, 6 * are permitted provided that the following conditions are met: 7 * 8 * * Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * * Redistributions in binary form must reproduce the above copyright notice, 12 * this list of conditions and the following disclaimer in the documentation 13 * and/or other materials provided with the distribution. 14 * 15 * * Neither the name of the University of Southampton nor the names of its 16 * contributors may be used to endorse or promote products derived from this 17 * software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 26 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 package org.openimaj.ml.clustering.spectral; 31 32 33 import org.apache.commons.math.stat.descriptive.moment.Variance; 34 import org.apache.log4j.Logger; 35 import org.openimaj.feature.DoubleFV; 36 import org.openimaj.feature.FeatureExtractor; 37 38 import ch.akuhn.matrix.DenseMatrix; 39 import ch.akuhn.matrix.Matrix; 40 import ch.akuhn.matrix.SparseMatrix; 41 42 /** 43 * Construct a similarity matrix using a Radial Basis Function 44 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 45 * 46 * @param <T> 47 */ 48 public class RBFSimilarityDoubleClustererWrapper<T> extends DoubleFVSimilarityFunction<T> { 49 50 private double[] var; 51 Logger logger = Logger.getLogger(RBFSimilarityDoubleClustererWrapper.class); 52 53 /** 54 * @param extractor 55 */ 56 public RBFSimilarityDoubleClustererWrapper(FeatureExtractor<DoubleFV,T> extractor) { 57 super(extractor); 58 } 59 60 private void prepareVariance() { 61 this.var = new double[this.feats[0].length]; 62 Matrix m = new DenseMatrix(feats); 63 double[] colArr = new double[this.feats.length]; 64 Variance v = new Variance(); 65 for (int i = 0; i < this.var.length; i++) { 66 m.column(i).storeOn(colArr, 0); 67 this.var[i] = v.evaluate(colArr); 68 } 69 } 70 71 @Override 72 protected SparseMatrix similarity() { 73 prepareVariance(); 74 int N = feats.length; 75 SparseMatrix sim = new SparseMatrix(N,N); 76 for (int i = 0; i < N; i++) { 77 double[] di = feats[i]; 78 sim.put(i,i,1); 79 for (int j = i+1; j < N; j++) { 80 double[] dj = feats[j]; 81 double expInner = 0; 82 // -1*sum((data(i,:)-data(j,:)).^2./(2*my_var)) 83 for (int k = 0; k < dj.length; k++) { 84 double kv = di[k] - dj[k]; 85 expInner += (kv * kv) / (2 * this.var[k]); 86 } 87 88 double v = Math.exp(-1 * expInner); 89 sim.put(i, j, v); 90 sim.put(j, i, v); 91 } 92 } 93 return sim; 94 } 95 96 97 98 }