View Javadoc

1   /**
2    * Copyright (c) 2011, The University of Southampton and the individual contributors.
3    * All rights reserved.
4    *
5    * Redistribution and use in source and binary forms, with or without modification,
6    * are permitted provided that the following conditions are met:
7    *
8    *   * 	Redistributions of source code must retain the above copyright notice,
9    * 	this list of conditions and the following disclaimer.
10   *
11   *   *	Redistributions in binary form must reproduce the above copyright notice,
12   * 	this list of conditions and the following disclaimer in the documentation
13   * 	and/or other materials provided with the distribution.
14   *
15   *   *	Neither the name of the University of Southampton nor the names of its
16   * 	contributors may be used to endorse or promote products derived from this
17   * 	software without specific prior written permission.
18   *
19   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
20   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22   * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
23   * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
26   * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29   */
30  package org.openimaj.workinprogress;
31  
32  import java.io.File;
33  import java.io.IOException;
34  
35  import org.openimaj.image.DisplayUtilities;
36  import org.openimaj.image.FImage;
37  import org.openimaj.image.pixel.Pixel;
38  import org.openimaj.image.processing.transform.FProjectionProcessor;
39  import org.openimaj.math.geometry.point.Point2dImpl;
40  import org.openimaj.math.geometry.shape.Circle;
41  import org.openimaj.math.geometry.shape.Rectangle;
42  import org.openimaj.math.geometry.shape.RotatedRectangle;
43  import org.openimaj.math.geometry.shape.Triangle;
44  import org.openimaj.math.geometry.transforms.TransformUtilities;
45  
46  import Jama.Matrix;
47  
48  public class Pendulum {
49  	public static void main(String[] args) throws IOException {
50  
51  		// background image
52  		final FImage background = FImage.randomImage(800, 600);
53  
54  		final Triangle triangle = new Triangle(new Point2dImpl(400, 100),
55  				new Point2dImpl(395, 500),
56  				new Point2dImpl(405, 500));
57  
58  		final FImage pendulumImage = new FImage(800, 600);
59  		final FImage pendulumMask = new FImage(800, 600);
60  		for (int y = 0; y < pendulumImage.height; y++) {
61  			for (int x = 0; x < pendulumImage.width; x++) {
62  				if (triangle.isInside(new Pixel(x, y))) {
63  					pendulumImage.pixels[y][x] = (float) Math.random();
64  					pendulumMask.pixels[y][x] = 1;
65  				}
66  			}
67  		}
68  
69  		final Triangle triangle2 = new Triangle(new Point2dImpl(650, 150),
70  				new Point2dImpl(645, 250),
71  				new Point2dImpl(655, 250));
72  
73  		final FImage clockImage = new FImage(800, 600);
74  		final FImage clockMask = new FImage(800, 600);
75  		for (int y = 0; y < clockImage.height; y++) {
76  			for (int x = 0; x < clockImage.width; x++) {
77  				if (triangle2.isInside(new Pixel(x, y))) {
78  					clockImage.pixels[y][x] = (float) Math.random();
79  					clockMask.pixels[y][x] = 1;
80  				}
81  			}
82  		}
83  
84  		final Circle circle = new Circle(50, 50, 25);
85  		final FImage linBallImage = new FImage(800, 600);
86  		final FImage linBallMask = new FImage(800, 600);
87  		for (int y = 0; y < linBallImage.height; y++) {
88  			for (int x = 0; x < linBallImage.width; x++) {
89  				if (circle.isInside(new Pixel(x, y))) {
90  					linBallImage.pixels[y][x] = (float) Math.random();
91  					linBallMask.pixels[y][x] = 1;
92  				}
93  			}
94  		}
95  
96  		final Circle circle2 = new Circle(50, 550, 25);
97  		final FImage accBallImage = new FImage(800, 600);
98  		final FImage accBallMask = new FImage(800, 600);
99  		for (int y = 0; y < accBallImage.height; y++) {
100 			for (int x = 0; x < accBallImage.width; x++) {
101 				if (circle2.isInside(new Pixel(x, y))) {
102 					accBallImage.pixels[y][x] = (float) Math.random();
103 					accBallMask.pixels[y][x] = 1;
104 				}
105 			}
106 		}
107 
108 		final File dir = new File("/Users/jon/pendulum+circle");
109 		dir.mkdirs();
110 		int i = 0;
111 		final double theta0 = 0.75;
112 		final double T = 0.1;
113 		double theta;
114 
115 		final double triMaxSpeed = theta0 * 400;
116 		final double clockMaxSpeed = 50 * 100;
117 		final double linBallMaxSpeed = 3000;
118 		final double accBallMaxSpeed = 30000;
119 
120 		final double triMaxAcc = theta0 * 400;
121 		final double accBallMaxAcc = 500000;
122 
123 		for (double t = 0; t < 1; t += 0.001, i++) {
124 			theta = theta0 * Math.cos(2 * Math.PI * t / T);
125 
126 			final FImage rotPendulumMask = rotate(pendulumMask, theta, 400, 100);
127 			final FImage rotPendulumImage = rotate(pendulumImage, theta, 400, 100);
128 
129 			// clock - constant angular motion
130 			final FImage rotClockMask = rotate(clockMask, t * 50, 650, 150);
131 			final FImage rotClockImage = rotate(clockImage, t * 50, 650, 150);
132 			DisplayUtilities.displayName(rotClockMask, "foo");
133 
134 			// upper circle - linear motion
135 			final FImage transLinBallMask = translate(linBallMask, (float) t * 3000, 0f);
136 			final FImage transLinBallImage = translate(linBallImage, (float) t * 3000, 0f);
137 
138 			// lower circle - accel motion
139 			final FImage transAccBallMask = translate(accBallMask, (float) (t * t * 500 * 500), 0f);
140 			final FImage transAccBallImage = translate(accBallImage, (float) (t * t * 500 * 500), 0f);
141 
142 			final FImage frame = new FImage(800, 600);
143 			final FImage frameVelX = new FImage(800, 600);
144 			final FImage frameVelY = new FImage(800, 600);
145 			final FImage frameVelMag = new FImage(800, 600);
146 			final FImage frameAccX = new FImage(800, 600);
147 			final FImage frameAccY = new FImage(800, 600);
148 			final FImage frameAccMag = new FImage(800, 600);
149 			frameVelX.fill(0.5f);
150 			frameVelY.fill(0.5f);
151 			frameAccX.fill(0.5f);
152 			frameAccY.fill(0.5f);
153 
154 			frame.drawShapeFilled(new Rectangle(50, 275, 50, 50), 1f);
155 			frame.drawShapeFilled(new RotatedRectangle(50, 275, 50, 50, Math.PI / 4), 1f);
156 
157 			for (int y = 0; y < frame.height; y++) {
158 				for (int x = 0; x < frame.width; x++) {
159 
160 					if (rotPendulumMask.pixels[y][x] > 0.5) {
161 						frame.pixels[y][x] = rotPendulumImage.pixels[y][x];
162 
163 						// Velocity of the pendulum triangle
164 						final double dx = x - 400, dy = y - 100, r = Math.sqrt(dx * dx + dy * dy);
165 						final double vt = -r * theta0 * Math.sin(2 * Math.PI * t / T);
166 						final double vx = Math.cos(theta) * vt;
167 						final double vy = Math.sin(theta) * vt;
168 						frameVelX.pixels[y][x] = (float) ((vx + triMaxSpeed) / (2 * triMaxSpeed));
169 						frameVelY.pixels[y][x] = (float) ((vy + triMaxSpeed) / (2 * triMaxSpeed));
170 						frameVelMag.pixels[y][x] = (float) (Math.abs(vt) / (triMaxSpeed));
171 
172 						// Acceleration of the pendulum triangle
173 						final double at = -r * theta0 * Math.cos(2 * Math.PI * t / T);
174 						final double ax = Math.cos(theta) * at;
175 						final double ay = Math.sin(theta) * at;
176 						frameAccX.pixels[y][x] = (float) ((ax + triMaxAcc) / (2 * triMaxAcc));
177 						frameAccY.pixels[y][x] = (float) ((ay + triMaxAcc) / (2 * triMaxAcc));
178 						frameAccMag.pixels[y][x] = (float) (Math.abs(at) / (triMaxAcc));
179 					} else if (rotClockMask.pixels[y][x] > 0.5) {
180 						frame.pixels[y][x] = rotClockImage.pixels[y][x];
181 
182 						// velocity of the clock triangle
183 						final double dx = x - 650, dy = y - 150, r = Math.sqrt(dx * dx + dy * dy);
184 						final double vt = r * 50;
185 						final double vx = Math.cos(50 * t) * vt;
186 						final double vy = Math.sin(50 * t) * vt;
187 
188 						frameVelX.pixels[y][x] = (float) ((vx + clockMaxSpeed) / (2 * clockMaxSpeed));
189 						frameVelY.pixels[y][x] = (float) ((vy + clockMaxSpeed) / (2 * clockMaxSpeed));
190 						frameVelMag.pixels[y][x] = (float) (Math.abs(vt) / (clockMaxSpeed));
191 
192 						// acceleration of the clock triangle
193 						// !!!clock doesn't accelerate!!!
194 					} else if (transLinBallMask.pixels[y][x] > 0.5) {
195 						frame.pixels[y][x] = transLinBallImage.pixels[y][x];
196 
197 						// velocity of the linear ball
198 						frameVelX.pixels[y][x] = (float) (3000f / (2 * linBallMaxSpeed));
199 						frameVelMag.pixels[y][x] = (float) (3000f / linBallMaxSpeed);
200 
201 						// acceleration of the linear ball
202 						// !!!ball doesn't accelerate!!!
203 					} else if (transAccBallMask.pixels[y][x] > 0.5) {
204 						frame.pixels[y][x] = transAccBallImage.pixels[y][x];
205 
206 						// velocity of the accelerating ball
207 						frameVelX.pixels[y][x] = (float) (500000 * t / (2 * accBallMaxSpeed));
208 						frameVelMag.pixels[y][x] = (float) (500000 * t / accBallMaxSpeed);
209 
210 						// acceleration of the accelerating ball
211 						frameAccX.pixels[y][x] = (float) (500000 / (2 * accBallMaxAcc));
212 						frameAccMag.pixels[y][x] = (float) (500000 / accBallMaxAcc);
213 					} else {
214 						frame.pixels[y][x] = background.pixels[y][x];
215 					}
216 				}
217 			}
218 
219 			DisplayUtilities.displayName(frame, "");
220 			DisplayUtilities.displayName(frameVelX, "Vx");
221 			DisplayUtilities.displayName(frameVelY, "Vy");
222 			DisplayUtilities.displayName(frameVelMag, "Velocity Magnitude");
223 			DisplayUtilities.displayName(frameAccX, "Ax");
224 			DisplayUtilities.displayName(frameAccY, "Ay");
225 			DisplayUtilities.displayName(frameAccMag, "Acceleration Magnitude");
226 
227 			// ImageUtilities.write(frame, new File(dir, "frame_" + i +
228 			// ".png"));
229 			// ImageUtilities.write(frameVelX, new File(dir, "frame_vx_" + i +
230 			// ".png"));
231 			// ImageUtilities.write(frameVelY, new File(dir, "frame_vy_" + i +
232 			// ".png"));
233 			// ImageUtilities.write(frameVelMag, new File(dir, "frame_vm+" + i +
234 			// ".png"));
235 			// ImageUtilities.write(frameAccX, new File(dir, "frame_ax_" + i +
236 			// ".png"));
237 			// ImageUtilities.write(frameAccY, new File(dir, "frame_ay_" + i +
238 			// ".png"));
239 			// ImageUtilities.write(frameAccMag, new File(dir, "frame_am_" + i +
240 			// ".png"));
241 		}
242 	}
243 
244 	private static FImage rotate(final FImage image, double angle, float px, float py) {
245 		final Matrix transform = TransformUtilities.rotationMatrixAboutPoint(angle, px, py);
246 		final FProjectionProcessor pp = new FProjectionProcessor();
247 		pp.setMatrix(transform);
248 		pp.accumulate(image);
249 		return pp.performProjection(true, 0f);
250 	}
251 
252 	private static FImage translate(final FImage image, float x, float y) {
253 		final Matrix transform = TransformUtilities.translateMatrix(x, y);
254 		final FProjectionProcessor pp = new FProjectionProcessor();
255 		pp.setMatrix(transform);
256 		pp.accumulate(image);
257 		return pp.performProjection(true, 0f);
258 	}
259 }