View Javadoc

1   /**
2    * Copyright (c) 2011, The University of Southampton and the individual contributors.
3    * All rights reserved.
4    *
5    * Redistribution and use in source and binary forms, with or without modification,
6    * are permitted provided that the following conditions are met:
7    *
8    *   * 	Redistributions of source code must retain the above copyright notice,
9    * 	this list of conditions and the following disclaimer.
10   *
11   *   *	Redistributions in binary form must reproduce the above copyright notice,
12   * 	this list of conditions and the following disclaimer in the documentation
13   * 	and/or other materials provided with the distribution.
14   *
15   *   *	Neither the name of the University of Southampton nor the names of its
16   * 	contributors may be used to endorse or promote products derived from this
17   * 	software without specific prior written permission.
18   *
19   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
20   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22   * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
23   * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
26   * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29   */
30  package org.openimaj.image.processing.convolution;
31  
32  import org.openimaj.image.FImage;
33  import org.openimaj.image.processor.SinglebandImageProcessor;
34  
35  /**
36   * Image processor for separable convolution of an FImage. Capable of doing
37   * convolution in either the vertical, horizontal or both directions.
38   * 
39   * @author Jonathon Hare (jsh2@ecs.soton.ac.uk)
40   */
41  public class FImageConvolveSeparable implements SinglebandImageProcessor<Float, FImage> {
42  	float[] hkernel;
43  	float[] vkernel;
44  
45  	/**
46  	 * Specify the horizontal kernel and vertical kernel separately.
47  	 * 
48  	 * @param hkernel
49  	 *            horizontal kernel
50  	 * @param vkernel
51  	 *            vertical kernel
52  	 */
53  	public FImageConvolveSeparable(float[] hkernel, float[] vkernel) {
54  		this.hkernel = hkernel;
55  		this.vkernel = vkernel;
56  	}
57  
58  	/**
59  	 * Specify a single kernel to be used as the horizontal and vertical.
60  	 * 
61  	 * @param kernel
62  	 *            both kernels
63  	 */
64  	public FImageConvolveSeparable(float[] kernel) {
65  		this.hkernel = kernel;
66  		this.vkernel = kernel;
67  	}
68  
69  	/*
70  	 * (non-Javadoc)
71  	 * 
72  	 * @see
73  	 * org.openimaj.image.processor.ImageProcessor#processImage(org.openimaj
74  	 * .image.Image)
75  	 */
76  	@Override
77  	public void processImage(FImage image) {
78  		if (hkernel != null)
79  			convolveHorizontal(image, hkernel);
80  		if (vkernel != null)
81  			convolveVertical(image, vkernel);
82  	}
83  
84  	/*
85  	 * Convolve an array of data with a kernel. The data must be padded at each
86  	 * end by half the kernel width (with replicated data or zeros). The output
87  	 * is written back into the data buffer, starting at the beginning and is
88  	 * valid through buffer.length-kernel.length.
89  	 */
90  	protected static void convolveBuffer(float[] buffer, float[] kernel)
91  	{
92  		final int l = buffer.length - kernel.length;
93  		for (int i = 0; i < l; i++) {
94  			float sum = 0.0f;
95  
96  			for (int j = 0, jj = kernel.length - 1; j < kernel.length; j++, jj--)
97  				sum += buffer[i + j] * kernel[jj];
98  
99  			buffer[i] = sum;
100 		}
101 	}
102 
103 	/**
104 	 * Convolve the image in the horizontal direction with the kernel. Edge
105 	 * effects are handled by duplicating the edge pixels.
106 	 * 
107 	 * @param image
108 	 *            the image to convolve.
109 	 * @param kernel
110 	 *            the convolution kernel.
111 	 */
112 	public static void convolveHorizontal(FImage image, float[] kernel) {
113 		final int halfsize = kernel.length / 2;
114 
115 		final float buffer[] = new float[image.width + kernel.length];
116 
117 		for (int r = 0; r < image.height; r++) {
118 			for (int i = 0; i < halfsize; i++)
119 				buffer[i] = image.pixels[r][0];
120 			for (int i = 0; i < image.width; i++)
121 				buffer[halfsize + i] = image.pixels[r][i];
122 			for (int i = 0; i < halfsize; i++)
123 				buffer[halfsize + image.width + i] = image.pixels[r][image.width - 1];
124 
125 			// convolveBuffer(buffer, kernel);
126 			final int l = buffer.length - kernel.length;
127 			for (int i = 0; i < l; i++) {
128 				float sum = 0.0f;
129 
130 				for (int j = 0, jj = kernel.length - 1; j < kernel.length; j++, jj--)
131 					sum += buffer[i + j] * kernel[jj];
132 
133 				buffer[i] = sum;
134 			}
135 			// end convolveBuffer(buffer, kernel);
136 
137 			for (int c = 0; c < image.width; c++)
138 				image.pixels[r][c] = buffer[c];
139 		}
140 	}
141 
142 	/**
143 	 * Convolve the image in the vertical direction with the kernel. Edge
144 	 * effects are handled by duplicating the edge pixels.
145 	 * 
146 	 * @param image
147 	 *            the image to convolve.
148 	 * @param kernel
149 	 *            the convolution kernel.
150 	 */
151 	public static void convolveVertical(FImage image, float[] kernel) {
152 		final int halfsize = kernel.length / 2;
153 
154 		final float buffer[] = new float[image.height + kernel.length];
155 
156 		for (int c = 0; c < image.width; c++) {
157 			for (int i = 0; i < halfsize; i++)
158 				buffer[i] = image.pixels[0][c];
159 			for (int i = 0; i < image.height; i++)
160 				buffer[halfsize + i] = image.pixels[i][c];
161 			for (int i = 0; i < halfsize; i++)
162 				buffer[halfsize + image.height + i] = image.pixels[image.height - 1][c];
163 
164 			// convolveBuffer(buffer, kernel);
165 			final int l = buffer.length - kernel.length;
166 			for (int i = 0; i < l; i++) {
167 				float sum = 0.0f;
168 
169 				for (int j = 0, jj = kernel.length - 1; j < kernel.length; j++, jj--)
170 					sum += buffer[i + j] * kernel[jj];
171 
172 				buffer[i] = sum;
173 			}
174 			// end convolveBuffer(buffer, kernel);
175 
176 			for (int r = 0; r < image.height; r++)
177 				image.pixels[r][c] = buffer[r];
178 		}
179 	}
180 
181 	/**
182 	 * Fast convolution for separated 3x3 kernels. Only valid pixels are
183 	 * considered, so the output image bounds will be two pixels smaller than
184 	 * the input image on all sides (the response of the kernel to the source
185 	 * pixel at 1,1 is stored in the destination image at 0,0)
186 	 * 
187 	 * @param source
188 	 *            the source image
189 	 * @param dest
190 	 *            the destination image
191 	 * @param kx
192 	 *            the x-kernel (can be null, implying [0 1 0] )
193 	 * @param ky
194 	 *            the y-kernel (can be null, implying [0 1 0])
195 	 * @param buffer
196 	 *            the working buffer (can be null, but ideally the same width as
197 	 *            the source image)
198 	 */
199 	public static void fastConvolve3(FImage source, FImage dest, float[] kx, float[] ky, float[] buffer)
200 	{
201 		final int dst_width = source.width - 2;
202 
203 		if (kx == null)
204 			kx = new float[] { 0, 1, 0 };
205 		if (ky == null)
206 			ky = new float[] { 0, 1, 0 };
207 
208 		if (buffer == null || buffer.length < source.width)
209 			buffer = new float[source.width];
210 
211 		for (int y = 0; y <= source.height - 3; y++) {
212 			final float[] src = source.pixels[y];
213 			final float[] src2 = source.pixels[y + 1];
214 			final float[] src3 = source.pixels[y + 2];
215 
216 			for (int x = 0; x < source.width; x++)
217 			{
218 				buffer[x] = ky[0] * src[x] + ky[1] * src2[x] + ky[2] * src3[x];
219 			}
220 
221 			for (int x = 0; x < dst_width; x++)
222 			{
223 				dest.pixels[y][x] = kx[0] * buffer[x] + kx[1] * buffer[x + 1] + kx[2] * buffer[x + 2];
224 			}
225 		}
226 	}
227 }