| Package | Description |
|---|---|
| org.openimaj.knn | |
| org.openimaj.knn.approximate | |
| org.openimaj.knn.pq | |
| org.openimaj.ml.clustering.assignment.soft | |
| org.openimaj.ml.clustering.kmeans |
K-Means in OpenIMAJ is designed to be both extremely fast and flexible.
|
| Modifier and Type | Class and Description |
|---|---|
class |
IntNearestNeighboursExact
Exact (brute-force) k-nearest-neighbour implementation.
|
| Modifier and Type | Method and Description |
|---|---|
IntNearestNeighbours |
IntNearestNeighboursProvider.getNearestNeighbours() |
| Modifier and Type | Class and Description |
|---|---|
class |
IntNearestNeighboursKDTree
Fast Nearest-Neighbours for int data using an ensemble of Best-Bin-First KDTrees.
|
| Modifier and Type | Class and Description |
|---|---|
class |
IncrementalIntADCNearestNeighbours
Incremental Nearest-neighbours using Asymmetric Distance Computation (ADC)
on Product Quantised vectors.
|
class |
IntADCNearestNeighbours
Nearest-neighbours using Asymmetric Distance Computation (ADC) on Product
Quantised vectors.
|
class |
IntSDCNearestNeighbours
Nearest-neighbours using Symmetric Distance Computation (SDC) on Product
Quantised vectors.
|
| Modifier and Type | Field and Description |
|---|---|
protected IntNearestNeighbours |
IntKNNAssigner.nn |
| Modifier and Type | Field and Description |
|---|---|
protected IntNearestNeighbours |
IntKMeans.Result.nn |
| Modifier and Type | Method and Description |
|---|---|
IntNearestNeighbours |
IntKMeans.Result.getNearestNeighbours() |
| Modifier and Type | Method and Description |
|---|---|
KMeansConfiguration<IntNearestNeighbours,int[]> |
IntKMeans.getConfiguration()
Get the configuration
|
| Modifier and Type | Method and Description |
|---|---|
void |
IntKMeans.setConfiguration(KMeansConfiguration<IntNearestNeighbours,int[]> conf)
Set the configuration
|
| Constructor and Description |
|---|
HierarchicalIntKMeans(KMeansConfiguration<IntNearestNeighbours,int[]> config,
int M,
int K,
int depth)
Construct a new
HierarchicalIntKMeans with the given parameters. |
IntKMeans(KMeansConfiguration<IntNearestNeighbours,int[]> conf)
Construct the clusterer with the the given configuration.
|