@Reference(type=Inproceedings, author={"Indyk, Piotr","Motwani, Rajeev"}, title="Approximate nearest neighbors: towards removing the curse of dimensionality", year="1998", booktitle="Proceedings of the thirtieth annual ACM symposium on Theory of computing", pages={"604","","613"}, url="http://doi.acm.org/10.1145/276698.276876", publisher="ACM", series="STOC \'98") public class ShortHammingFactory extends ShortHashFunctionFactory
ndims, rng| Constructor and Description |
|---|
ShortHammingFactory(int ndims,
cern.jet.random.engine.MersenneTwister rng,
int bitsPerDim)
Construct a new factory using the given parameters.
|
| Modifier and Type | Method and Description |
|---|---|
org.openimaj.lsh.functions.ShortHammingFactory.Function |
create()
Construct a new
HashFunction. |
ShortFVComparison |
fvDistanceFunction() |
distanceFunctionpublic ShortHammingFactory(int ndims, cern.jet.random.engine.MersenneTwister rng, int bitsPerDim)
ndims - The number of dimensions (i.e. length of the vector being
hashed)rng - A random number generatorbitsPerDim - The number of bits per dimension. If the data is packed, then
this will be greater than zero, and internally a single bit
will be sampled for computing the hash. If zero, then it is
assumed that every element of the vector being hashed is
either a zero or one.public org.openimaj.lsh.functions.ShortHammingFactory.Function create()
HashFunctionFactoryHashFunction.HashFunctionpublic ShortFVComparison fvDistanceFunction()
fvDistanceFunction in class ShortHashFunctionFactory