@Reference(type=Article, author={"Anthony J. Bell","Terrence J. Sejnowski"}, title="The `Independent Components\' of Natural Scenes are Edge Filters.", year="1997", journal="VISION RESEARCH", pages={"3327","","3338"}, volume="37") public class ZCAWhitening extends PCAWhitening
eps, ndims, ns, transform
Constructor and Description |
---|
ZCAWhitening(double eps,
Normaliser ns)
Construct with the given variance regularization parameter and data
normalisation strategy.
|
Modifier and Type | Method and Description |
---|---|
void |
train(double[][] data)
Train the whitening transform with the given features.
|
getTransform, whiten
whiten
public ZCAWhitening(double eps, Normaliser ns)
eps
- the variance normalisation regularizer (each principle
dimension is divided by sqrt(lamba + eps), where lamba is the
corresponding eigenvalue).ns
- the normalisation to apply to each input data vector prior to
training the transform or applying the actual whitening.public void train(double[][] data)
WhiteningTransform
train
in class PCAWhitening
data
- the data (one feature per row)