I
- type of independent dataD
- type of dependent dataM
- concrete type of model learned@Reference(type=Article, author="Peter J. Rousseeuw", title="Least Median of Squares Regression", year="1984", journal="Journal of the American Statistical Association", pages={"871","","880"}, url="http://www.jstor.org/stable/2288718", month="December", number="388", volume="79") public class LMedS<I,D,M extends EstimatableModel<I,D>> extends Object implements RobustModelFitting<I,D,M>
Modifier and Type | Field and Description |
---|---|
protected M |
bestModel |
protected boolean |
improveEstimate |
protected List<IndependentPair<I,D>> |
inliers |
protected M |
model |
protected List<IndependentPair<I,D>> |
outliers |
protected ResidualCalculator<I,D,M> |
residualEstimator |
protected CollectionSampler<IndependentPair<I,D>> |
sampler |
Constructor and Description |
---|
LMedS(M model,
ResidualCalculator<I,D,M> residualEstimator,
boolean impEst)
Construct with the given model and residual calculator.
|
LMedS(M model,
ResidualCalculator<I,D,M> residualEstimator,
boolean impEst,
CollectionSampler<IndependentPair<I,D>> sampler)
Construct with the given model and residual calculator.
|
LMedS(M model,
ResidualCalculator<I,D,M> residualEstimator,
double outlierProportion,
boolean impEst)
Construct with the given model, residual calculator and estimated
proportion of outliers.
|
LMedS(M model,
ResidualCalculator<I,D,M> residualEstimator,
double outlierProportion,
boolean impEst,
CollectionSampler<IndependentPair<I,D>> sampler)
Construct with the given model, residual calculator and estimated
proportion of outliers.
|
LMedS(M model,
ResidualCalculator<I,D,M> residualEstimator,
double outlierProportion,
double inlierNoiseLevel,
double degreesOfFreedom,
boolean impEst)
Construct with the given model, residual calculator and estimated
proportion of outliers.
|
LMedS(M model,
ResidualCalculator<I,D,M> residualEstimator,
double outlierProportion,
double inlierNoiseLevel,
double degreesOfFreedom,
boolean impEst,
CollectionSampler<IndependentPair<I,D>> sampler)
Construct with the given model, residual calculator and estimated
proportion of outliers.
|
Modifier and Type | Method and Description |
---|---|
boolean |
fitData(List<? extends IndependentPair<I,D>> data)
Attempt to fit the given data to the model.
|
List<? extends IndependentPair<I,D>> |
getInliers() |
M |
getModel() |
List<? extends IndependentPair<I,D>> |
getOutliers() |
int |
numItemsToEstimate() |
protected ResidualCalculator<I,D,M extends EstimatableModel<I,D>> residualEstimator
protected boolean improveEstimate
protected M extends EstimatableModel<I,D> model
protected M extends EstimatableModel<I,D> bestModel
protected List<IndependentPair<I,D>> inliers
protected List<IndependentPair<I,D>> outliers
protected CollectionSampler<IndependentPair<I,D>> sampler
public LMedS(M model, ResidualCalculator<I,D,M> residualEstimator, boolean impEst)
model
- the model to estimateresidualEstimator
- the algorithm to compute residuals of the modelimpEst
- True if we want to perform a final fitting of the model with
all inliers, false otherwisepublic LMedS(M model, ResidualCalculator<I,D,M> residualEstimator, double outlierProportion, boolean impEst)
model
- the model to estimateresidualEstimator
- the algorithm to compute residuals of the modeloutlierProportion
- Expected proportion of outliersimpEst
- True if we want to perform a final fitting of the model with
all inliers, false otherwisepublic LMedS(M model, ResidualCalculator<I,D,M> residualEstimator, double outlierProportion, double inlierNoiseLevel, double degreesOfFreedom, boolean impEst)
model
- the model to estimateresidualEstimator
- the algorithm to compute residuals of the modeloutlierProportion
- Expected proportion of outliersinlierNoiseLevel
- The level of inlier noise (standard deviation of Gaussian
noise inherent in the data).degreesOfFreedom
- Number of degrees of freedom of the modelimpEst
- True if we want to perform a final fitting of the model with
all inliers, false otherwisepublic LMedS(M model, ResidualCalculator<I,D,M> residualEstimator, boolean impEst, CollectionSampler<IndependentPair<I,D>> sampler)
model
- the model to estimateresidualEstimator
- the algorithm to compute residuals of the modelimpEst
- True if we want to perform a final fitting of the model with
all inliers, false otherwisesampler
- the sampling algorithm for selecting random subsetspublic LMedS(M model, ResidualCalculator<I,D,M> residualEstimator, double outlierProportion, boolean impEst, CollectionSampler<IndependentPair<I,D>> sampler)
model
- the model to estimateresidualEstimator
- the algorithm to compute residuals of the modeloutlierProportion
- Expected proportion of outliersimpEst
- True if we want to perform a final fitting of the model with
all inliers, false otherwisesampler
- the sampling algorithm for selecting random subsetspublic LMedS(M model, ResidualCalculator<I,D,M> residualEstimator, double outlierProportion, double inlierNoiseLevel, double degreesOfFreedom, boolean impEst, CollectionSampler<IndependentPair<I,D>> sampler)
model
- the model to estimateresidualEstimator
- the algorithm to compute residuals of the modeloutlierProportion
- Expected proportion of outliersinlierNoiseLevel
- The level of inlier noise (standard deviation of Gaussian
noise inherent in the data).degreesOfFreedom
- Number of degrees of freedom of the modelimpEst
- True if we want to perform a final fitting of the model with
all inliers, false otherwisesampler
- the sampling algorithm for selecting random subsetspublic boolean fitData(List<? extends IndependentPair<I,D>> data)
ModelFitting
fitData
in interface ModelFitting<I,D,M extends EstimatableModel<I,D>>
data
- Data to be fittedpublic M getModel()
getModel
in interface ModelFitting<I,D,M extends EstimatableModel<I,D>>
public List<? extends IndependentPair<I,D>> getInliers()
getInliers
in interface RobustModelFitting<I,D,M extends EstimatableModel<I,D>>
public List<? extends IndependentPair<I,D>> getOutliers()
getOutliers
in interface RobustModelFitting<I,D,M extends EstimatableModel<I,D>>
public int numItemsToEstimate()
numItemsToEstimate
in interface ModelFitting<I,D,M extends EstimatableModel<I,D>>