public class DoubleKDTreeClusterer extends Object implements SpatialClusterer<KDTreeClusters,double[]>
Constructor and Description |
---|
DoubleKDTreeClusterer()
calls:
DoubleKDTreeClusterer() with 0.01 |
DoubleKDTreeClusterer(double varprop) |
DoubleKDTreeClusterer(double varprop,
int startindex,
int ndims) |
DoubleKDTreeClusterer(SplitDetectionMode detectionMode,
double varprop,
int startindex,
int ndims) |
Modifier and Type | Method and Description |
---|---|
KDTreeClusters |
cluster(DataSource<double[]> data)
Perform clustering with data from a data source.
|
KDTreeClusters |
cluster(double[][] data)
Perform clustering on the given data.
|
int[][] |
performClustering(double[][] data) |
public DoubleKDTreeClusterer()
DoubleKDTreeClusterer()
with 0.01public DoubleKDTreeClusterer(double varprop, int startindex, int ndims)
varprop
- the proportion of variance change from the root variance before splitting stopsstartindex
- the index to start fromndims
- the number of dimensions to split onpublic DoubleKDTreeClusterer(SplitDetectionMode detectionMode, double varprop, int startindex, int ndims)
detectionMode
- The SplitDetectionMode
given the feature of highest variancevarprop
- The minimum proportional variance (compared to the first variance)startindex
- the feature start indexndims
- the number of features to usepublic DoubleKDTreeClusterer(double varprop)
varprop
- the proportion of variance change from the root variance before splitting stopspublic int[][] performClustering(double[][] data)
performClustering
in interface Clusterer<double[][]>
public KDTreeClusters cluster(double[][] data)
SpatialClusterer
cluster
in interface SpatialClusterer<KDTreeClusters,double[]>
data
- the data.public KDTreeClusters cluster(DataSource<double[]> data)
SpatialClusterer
DataSource
could potentially be backed by disk rather in memory.cluster
in interface SpatialClusterer<KDTreeClusters,double[]>
data
- the data.