T
- Type of object being clusteredpublic static class FeatureVectorKMeans.Result<T extends FeatureVector> extends FeatureVectorCentroidsResult<T> implements ObjectNearestNeighboursProvider<T>
Modifier and Type | Field and Description |
---|---|
protected int |
changedCentroidCount |
protected int |
iterations |
protected ObjectNearestNeighbours<T> |
nn |
centroids
CLUSTER_HEADER
Constructor and Description |
---|
Result() |
Modifier and Type | Method and Description |
---|---|
HardAssigner<T,float[],IntFloatPair> |
defaultHardAssigner()
Get the default hard assigner for this clusterer.
|
ObjectNearestNeighbours<T> |
getNearestNeighbours() |
int |
numChangedCentroids()
Get the number of changed centroids in the last iteration.
|
int |
numIterations()
Get the number of K-Means iterations that produced this result.
|
asciiHeader, binaryHeader, equals, getCentroids, numClusters, numDimensions, readASCII, readBinary, toString, writeASCII, writeBinary
protected ObjectNearestNeighbours<T extends FeatureVector> nn
protected int iterations
protected int changedCentroidCount
public Result()
public ObjectNearestNeighbours<T> getNearestNeighbours()
getNearestNeighbours
in interface ObjectNearestNeighboursProvider<T extends FeatureVector>
public HardAssigner<T,float[],IntFloatPair> defaultHardAssigner()
SpatialClusters
defaultHardAssigner
in interface SpatialClusters<T extends FeatureVector>
defaultHardAssigner
in class FeatureVectorCentroidsResult<T extends FeatureVector>
public int numIterations()
public int numChangedCentroids()